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Abstract

We wish to use the Hasse-Minkowski Theorem to prove two results in
elementary number theory, Fermat’s Two Square Theorem and Lagrange’s
Four Squares Theorem. The proof of Fermat’s Sum of Two Squares Theo-
rem will be covered in detail, while the proof of the four squares Theorem
will be roughly sketched at the end of this paper. The aim of this paper is
to give undergraduate readers a taste of how to use the Hasse-Minkowski
Theorem to find solutions to quadratic forms. We demonstrate that using
this theorem, one can break down the complicated problem of solving a
quadratic form into two simpler ones: finding a solution in R and a solu-
tion over a small number of p-adic fields.

To make this material accessible, we firstly introduce the necessary lan-
guages to phrase the powerful Hasse-Minkowski Theorem in the first two
sections. Those definitions including: quadratic form, compatible system
of congruences, compatible family of solutions, and p-adic numbers. To
motivate our readers, we prove the equivalence of solving rational solu-
tions for two-variable equation and integer solutions for a three-variable
quadratic form.

After making our audience familiar with the necessary language, we gen-
tly introduce the Hasse-Minkowski Theorem in three versions. The reason
behind providing different versions of the Hasse-Minkowski Theorem is to
firstly give readers a intuitive interpretation, and then dive into the mod-
ern language of this powerful theorem in algebraic number theory. Finally,
in the rest of our paper, we will rely on the third version, finding solutions
in certain p-adic fields, such that p = 2.

We further simplify the relatively complicated problem of finding solu-
tions in every p-adic field, into finding one congruence for p = 2 and each
prime p diving n in q(X,Y, Z) = X2 +Y 2−nZ2. To make readers under-
stand this simplification, in the fourth section, we discussed polynomial
congruences and present a method to generate a compatible system of
solutions.

Then, we move on to the proof of Fermat’s Sum of Two Squares The-
orem. By lemma 3.1, we reduce n to be square-free and odd. Moreover,
we prove two important lemmas to tackle Fermat’s puzzle into two dif-
ferent cases: p = 2 and p is prime dividing n. First, we prove the Sum
of Squares Theorem with rational solutions. Finally, we showed that the
rational solutions imply integer solutions to complete the proof.

In the last section, we roughly sketched the proof of Lagrange’s Theo-
rem on the sum of four squares. Similar to the thought process of proving
Sum of Two Square Theorems, we firstly guarantee the existence of so-
lution over Q2 for all n ∈ N. Then, we simplify the proof of Sum of
Lagrange’s Four Squares Theorem into showing the existence of solution
over Qp, where p is prime dividing n, for all n ∈ N.
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1 The Power of Hasse-Minkowski

The Hasse-Minkowski Theorem describes the circumstances where a quadratic
form is guaranteed to have integer solutions.

Definition 1.1. A quadratic form is a homogeneous polynomial, Q(X1, ..., Xn)
of degree 2 with n ≥ 2 variables. Q(X1, ..., Xn) = a1,1X1

2 + a1,2X1X2 + ... +
an,nXn

2 with a1,1, a1,2, ..., an,n ∈ Z

To make full use of this incredibly powerful theorem, we need to be able
to apply it in situations that don’t explicitly contain a quadratic form. The
following two theorems, which will be the focus of this paper, are applications
where a quadratic form can be constructed in order to use the Hasse-Minkowski
theorem after a little bit of manipulation.

Theorem 1.1 (Fermat’s sum of sq). An odd prime, p is the sum of two integer
squares if and only if p ≡ 1 (mod 4).

Theorem 1.2 (Lagrange’s four sq). For every x ∈ N, x can be expressed as the
sum of four squares. x = a2 + b2 + c2 + d2 for some a, b, c, d ∈ Z.

The barrier to applying the Hasse-Minkowski theorem directly to either of
these two theorems is that although they both involve quadratic equations,
Hasse-Minkowski is concerned with quadratic forms. So, we must understand
the connection between quadratic forms and quadratic equations in order to use
the heavy weapon at our disposal.

The way we will make use of the relationship between quadratic forms and
quadratic equations is by constructing a quadratic form in terms of a given
quadratic equation. Let f be a quadratic equation with integer coefficients, de-
fine quadratic form Q as follows.

f(x, y) = ax2 + bxy + cy2 + dx+ ey + f

Q(X,Y, Z) = Z2f(X
Z ,

Y
Z ) = aX2 + bXY + cY 2 + dXZ + eY Z + fZ2

We need a few definitions about the solutions of Q. We say an integral
solution , Q(b1, b2, ..., bn) = 0 with b1, b2, ..., bn ∈ Z is non trivial if there is
some bn 6= 0, and we say it is a primitive solution if gcd(b1, b2, ..., bn) = 1. We
will remark that any non trivial integral solution implies a primitive solution,
as we encourage the reader to verify.

Now we get to the crux of the relationship between f and Q. There is a
bijection between primitive integral solutions of Q, (x, y, z) with z 6= 0 and ra-
tional solutions of f.

Q(x, y, z) = 0→ f(x
z ,

y
z ) = 0

f(a
b ,

c
d ) = 0→ Q(an

b ,
cn
d , n) = 0

with n = lcm(b, d).
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Plugging in and solving will verify these relationships. We note here that we
have established a bijection between integral solutions of a quadratic form and
rational solutions of a quadratic equation, so even though the Hasse Minkowski
theorem might guarantee integer solutions to the quadratic form, if we are con-
cerned with integer solutions to a quadratic equation, we must still show later
that the existence of rational solutions to a quadratic equation implies the ex-
istence of integer solutions.

Now that we have a bijection between solutions of a quadratic equation and
a quadratic form, we state an instrumental fact.

Lemma 1.3. Considering a quadratic function, f with integer coefficients.
f(x, y) = ax2 + bxy + cy2 + dx+ ey + f

And a quadratic form
Q(X,Y, Z) = Z2f(X

Z ,
Y
Z )

Provided b2 − 4ac is not a rational square, the following two statements are
equivalent.

• Q has a non trivial integral solution.

• f has a rational solution.

Proof. What we are really trying to show here is that a solution (u, v, w) to Q
will have w 6= 0, because this is what will allow our bijection to work. We will
show that if b2 − 4ac is not a square, then every integral solution (u, v, w) of Q
will have w 6= 0. Towards a contradiction, suppose (u, v, w) is a solution of Q
with w = 0.

0 = Q(u, v, 0) = au2 + buv + cv2

We know b2− 4ac is not a square so a and c are non-zero. Then au2 + buv+
cv2 = 0 implies:

u = −bv±
√
b2v2−4acv2

2a = (−b±
√
b2−4ac
2a )v

So it follows that ±
√
b2 − 4ac = 2au/v + b, thus b2 − 4ac = (2au/v + b)2, a

rational square, contradicting our assumption. Therefore if (u, v, w) is a an
integral solution of Q, then w 6= 0. �

Note that we have let f be a quadratic equation in two variables, but the
bijection we have established can be generalized for more variables, as we will
need it to in order to apply it to Lagrange’s four squares theorem. We will also
have to show that any solution (x, y, z, w, a) to L(X,Y, Z,W,A) = X2 + Y 2 +
Z2 + W 2 − nA2 = 0 has a 6= 0 in order for (x

a ,
y
a ,

z
a ,

w
a ) to be a solution to

f(x, y, z, w) = x2 + y2 + z2 + w2 − n = 0. But this is not hard to show at all
because a sum of squares will always be positive, so any solution clearly will
not have a = 0. The same argument can be applied for the solutions to the
quadratic form relevant to the two square theorem. We have presented general
information to show how the Hasse-Minkowski theorem might be applied in
other scenarios, but for our purposes or our purposes 1.3 is overkill.
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2 The Hasse-Minkowski Theorem

Before diving into the statement of Hasse Minkowski Theorem, let’s introduce
the necessary languages pertaining to the theorem: a compatible system of
congruences, a compatible family of solutions, and p-Adic numbers.

2.1 A Compatible System of Congruences

Definition 2.1. Let {mk}k≥1 be a sequence of positive integers. We say that
S = {ak mod mk}k≥1 forms a compatible (or coherent) family of congruence
classes if the following condition is satisfied: if gcd(mj ,mk) = d, then ak ≡ aj
mod d. Equivalently, S is compatible if every system of finitely many linear
congruences in S has an integer solution.

The best way to interpret this language, is to think about the solution given
by the Chinese Remainder Theorem. Firstly, let’s consider an example of a
compatible system of congruences.

Example 2.1. Let a1, a2, ..., ar ∈ N be pairwise relatively prime, and let k1, k2, ..., kr ∈
Z. Then, the following is a compatible system of congruences.

k1 ≡ r (mod a1),

k2 ≡ r (mod a2),
...

kr ≡ r (mod ar).

(1)

Moreover, the solution to this system is s ≡ s0 (mod m), where m = a1 ·a2 ·...ar.

With the knowledge of the general version of the Chinese Remainder The-
orem, we know that there is nothing special about relatively primes. From the
constructive proof of the Chinese Remainder Theorem, whether there is a com-
patible system of congruences (a solution to the congruences class) depends on
whether Diophantine equations have solutions.

Example 2.2. Consider the set of congruence classes

S = {2 mod 3, 3 mod 5, 4 mod 7, 8 mod 15, 18 mod 35}

S is a compatible system of congruence, since it satisfies the following condition:

If gcd(m, s) = d, a mod n and b mod m, then a ≡ b mod d.

2.2 A Compatible Family of Solutions

Definition 2.2. Let q be a quadratic form in n variables. A sequence of solu-
tions {a1,m, ..., an,m (mod m)}m≥1 of q ≡ 0 mod m, for each m ≥ 1, forms a
compatible family of solutions if each coordinate forms a compatible system of
congruences; i.e. {ai,m mod m}k≥1 forms a compatible family of congruences,
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for each i = 1,...,n.
Note that ai,j means the i-th coordinate in the j-th modulus.

We say that a compatible family of solutions is non-trivial if there is some m ≥
2 such that the solution (a1,m, ..., an,m) mod m is not congruent to (0, ..., 0)
mod m.

To better understand this notion, it would be helpful to consider a numerical
example.

Example 2.3. X2 + Y 2 ≡ 3Z2 mod m has no non-trivial compatible system
of solutions.

Consider the cases of m = 2 and m = 4. When m = 2, the only non-trivial
solutions of Q(X,Y, Z) = X2 + Y 2 − 3Z2 = 0 are (1, 1, 0), (1, 0, 1), and(0, 1, 1).
Whenm = 4, the only non-trivial solutions ofQ = 0 are (2, 0, 0), (0, 2, 0), (2, 0, 2),
and(0, 2, 2). Then, for the non-trivial (nonzero) coordinate, we get a congru-
ence class {1 (mod 2), 2 (mod 4)}. Because 1 is not congruent to 2 modulo
2 = gcd(2, 4), then this is not a compatible system of congruences. Thus, there
is no compatible solutions for X2 + Y 2 ≡ 3Z2 mod m.

2.3 The First Version of Hasse-Minkowski Theorem

Equipped with all necessary languages, we can finally present the Hasse-Minkowski
Theorem, which was originally proved by Hermann Minkowski and generalized
by Helmut Hasse. Also known as local-global principle, this theorem has pro-
found influence in algebraic number theory, since it breaks down the complicated
problem of checking whether a quadratic form over real number, into checking
the existence of solutions in smaller fields (specifically p-Adic fields, which I am
going to define later in this section). This bridge turns out to be crucial to prove
many famous results, including the one we are going to show is this paper ––
Fermat’s Sum of Square Theorem.

Theorem 2.1. (Hasse-Minkowski Theorem). Let q(X1, ..., Xn) be a regular
quadratic form defined over Q. Then, q = 0 has a non-trivial integral solution
(i.e., not all coordinates are zero) if and only if there is a non-trivial solution
over Rand the congruences q ≡ 0 mod m, for all m > 1, have a non-trivial
compatible system of solutions.

Here is a example for readers to have a quick taste of the power of Hasse-
Minkowski Theroem in solving the real solutions of quadratic equations.

Example 2.4. Let n be a natural number. By the Hasse-Minkowski Theorem,
X2 +Y 2 = nZ2 has a nontrivial integral solution if and only if X2 +Y 2 = nZ2

has a non-trivial solution over R(which turns out to be very easy to show) and
the congruences X2 + Y 2 ≡ 3Z2 mod m, for all m > 1 have a non-trivial
compatible system of congruences.
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This example indeed is the equivalent form of Fermat’s Last Theorem in
quadratic form with three variables. Thus, over goal right now is to show
the existence of a non-trivial compatible system of congruences for all m¿1.
However, this result is quiet hard to show directly. Let’s go ahead and introduce
the version Hasse-Minkowski Theorem in the language of p-Adic numbers.

2.4 Hasse-Minkowski Theorem Stated in The Language of
P-Adic Numbers

Before introducing the Hasse Minkowski Theorem in the language of p-adic
number, we first state another equivalent version of this theorem about modulo
prime p to all k > 1 orders.

Theorem 2.2. (Hasse-Minkowski Theorem, prime version). Let q(X1, ..., Xn)
be a regular quadratic form defined over Q. Then, q = 0 has a non-trivial
integral solution if and only if there is a non-trivial solution over R and, for
each prime p > 1,there is a non-trivial compatible system of solutions of q ≡ 0
mod pk, for all k ≥ 1; i.e., {xi,pk mod pk}k≥1 forms a compatible family of
congruences, for each i = 1,...,n, with every fixed odd prime p.

Essentially, with this definition, we can further breaking down the relatively
hard question of a large compatible system of solutions to several compatible
system of solutions with all odd primes. To systematically phrase this version
of Hasse Minkowski Theorem, the notion of p-adic numbers is naturally tied in
to the conversation.

We can simply understand a p-adic as a set of compatible system of congru-
ences modulo pk, for all k ≥ 1. Let’s formally introduce the definition of p-adic
numbers.

Definition 2.3. The p-adic integers, denoted by Zp, are defined as follows:

Zp = {(a1.a2, ...) : an ∈ Z/pnZ such that an+1 ≡ an mod pn}.

To understand this abstract definition, let’s consider the number 200 as a
3-adic number. More generally, any number a ∈ N is contained in a p-adic ring.

Example 2.5. The number 200 in Z3 is given by

200 = (2, 2, 11, 38, 200, 200, 200, 200, 200, ...).

Note that all the congruences after mod 25 becomes 200, since 200 < pk, for
k ≥ 5; and this system is compatible since, m ≡ m mod pk, for all k ≥ 1.

After understanding the definition of p-adic numbers, observe that in the
prime version of Hasse Minkowski Theorem, every compatible system of con-
gruences is indeed a p-adic number.
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Theorem 2.3. (Hasse-Minkowski Theorem, p-adic version). Let q(X1, ..., Xn)
be a regular qua-dratic form defined over Q. Then, q = 0 has a non-trivial
integral solution if and only if there is a non-trivial solution over R and over
Qp for each prime p.

Note that Qp means the p-adic field, such that Z sits inside Qp by Example
2.4. Under the language of p-adic number, the statement of Hasse Minkowski
Theorem is very concise. Coming back to our goal of proving Fermat’s Sum
of Squares Theorem, we can then translate the problem into finding non-trivial
solutions in each Qp.

Example 2.6. Let n be a natural number. By the Theorem 2.3, X2+Y 2 = nZ2

has a nontrivial integral solution if and only if X2 +Y 2 = nZ2 has a non-trivial
solution over R and over Qp, for each prime p.

Indeed, we can further narrow down p into 2 and all the odd primes that
divides n. Thus we only have finitely many primes to consider.

Example 2.7. Let n be a natural number. By the Theorem 2.3, X2+Y 2 = nZ2

has a nontrivial integral solution if and only if X2 +Y 2 = nZ2 has a non-trivial
solution over R and over Qp, for p = 2 and each prime p dividing n.

This last version of Hasse-Minkowski Theorem is exactly what I will use to
prove Fermat’s Sum of Squares Theorem. By only considering 2-adic and p-adic
fields such that p divides n, the puzzle left by Fermat can be finally solved.

3 Solving The Solution Over Qp

3.1 Reducing n

Aiming to add a few constraints to n, we are looking at the most representative
value of n. Reducing n to odd and square-free case gives us more conditions to
work with the proof of the Sum of Squares Theorem.

Lemma 3.1. Let n > 1. The following statements are equivalent:

i The number n is a sum of two (rational) squares.

ii The number 2kn is a sum of two (rational) squares, for every k ≥ 1.

iii The number nt2 is a sum of two (rational) squares, for any t ∈ Z.

Proof. (1) Show i and ii are equivalent. (=⇒) By induction, let S(k) be for
k ∈ N, 2kn is a sum of squares. Assume that n is a sum of two squares,
let n = a2 + b2, where a, b ∈ N. Claim that S(1) holds true. Since 2n =
2(a2 + b2) = (a + b)2 + (a − b)2, 2n is a sum of squares. Suppose that s(k-1)
is true. Then, relabel a, b if necessary, 2k−1 = a2 + b2. By the same token,
2k = 2(a2 + b2) = (a + b)2 + (a − b)2, which suggests that S(k) holds true.
(⇐=) By induction, similar to the if direction, assume that 2n = a2 + b2. Then,
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n = (a2 + b2)/2 = [(a+ b)/2]2 + [(a− b)/2]2, which shows that 2n/2 is a sum of
squares. Therefore, i and ii are equivalent.
(2) Show i and iii are equivalent. (=⇒) Suppose n = a2 + b2, then nt2 =
a2t2 + b2t2 = at2 + bt2, which implies that nt2 is a sum of squares.

(⇐=) Assume nt2 = a2 + b2, then divide both sides by t2. Then, n = a2

t2 + a2

t2 =

(a
t )2 + ( b

t )2. Therefore, nt2 being a sum of squares implies that n is a sum of
squares.
In conclusion, i, ii, and iii are equivalent. �

The lemma 3.1 provides a powerful tool for us to reduce n to be odd and
square-free. All of collections of integers that can be written as a sum squares
can be derived from a smaller subset that only contains odd and square-free
numbers. Later on, readers will see the crucial role of those two conditions.

3.2 Solving The Solution Over Qp

In the second section, we finally simplify the puzzle of proving Fermat’s Sum
of Squares Theorem into solving p-adic numbers over Qp for p = 2 and each
prime p diving n. In this section, I will present a powerful Lemma that can
further breaking down systems of compatible solutions into solving individual
congruence.
The following Lemma is introduced here to motivate the proof, but will be
proved in details relied on the investigation of polynomial congruences, specifi-
cally whether there is an integer solution to f(x) ≡ 0 mod pk, decided by f ′(x)
and the divisibility of f(x)

Lemma 3.2. Let c be an integer not divisible by a prime p. Then:

(1) The quadratic form q = x2− c = 0 has solution over Q2 if and only if c ≡ 1
mod 8.

(2) The quadratic form q = x2 − c = 0 has solution over Qp, where p > 2, if
and only if x2 ≡ c mod p has a solution.

With the help of Lemma 3.2, instead of solving every congruence and then
prove this system is compatible, we can simply prove two congruence: (1) c ≡ 1
mod 8, and (2) x2 ≡ c mod p. So far, we have all the languages and Lemma
that are necessary to prove When Fermat’s Sum of Square Theorem has rational
solutions.

4 Polynomial Congruences

To prove lemma 3.2 we will take a brief detour into the world of polynomial
congruence. We will give a general way of building up a compatible system of
solutions to a polynomial in Z/pkZ for k ≥ 1. Note that this is equivalent to
finding a solution to the polynomial over Qp.

We begin with a general statement about polynomial congruences
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Lemma 4.1. For a prime p and an polynomial f(x) with integer coefficients,
we have the following congruence for any integer t.

f(x+ pkt) ≡ f(x) + f ′(x)pkt (mod pk+1Z[x])

Which is to say, there exists a polynomial h(x) such that (f(x+pkt)−(f(x)+
f ′(x)pkt) is divisible by pk+1h(x) for all t.

Proof. We will proceed by induction on the degree of f . If the degree of f is
0 then f is a constant function, and the result holds. Now we will assume the
result is true for polynomials of degree n and show that it must be true for
polynomials of degree n+1. Let f(x) be a polynomial of degree n+1. For some
integer a we can write f(x) = a+ xg(x) for a polynomial g of degree n. Using
the product rule we have f ′(x) = g(x)+xg′(x). We know the lemma is true for g
so we will simply perform algebraic manipulations to produce the desired result.

f(x+ pkt) ≡ a+ (x+ pkt)g(x+ pkt) ≡ a+ (x+ pkt)(g(x) + g′(x)pkt)
≡ a+ xg(x) + (xg′(x) + g(x))pkt+ g′(x)t2p2k

≡ a+ xg(x) + (xg′(x) + g(x))pkt
≡ f(x) + f ′(x)pkt (mod pk+1Z[x])

By the principle of mathematical induction, this result is true for polynomials
of all degrees. �

Now we have the tool we need to consider when and how we can construct a
p-adic solution to a polynomial. There are general results on this topic that are
readily accessible, but here we will limit ourselves to what is useful in proving
Lemma 3.2.

Lemma 4.2. If there exists a solution sk to f(x) ≡ 0 (mod pk), and f ′(sk) is
not divisible by p, then there is a solution sk+1 to f(x) ≡ 0 (mod pk+1) with
sk+1 ≡ sk (mod pk) given by:

sk+1 ≡ sk − f(sk)(f ′(sk))−1 (mod pk+1)
Where (f ′(sk))−1 is the multiplicative inverse of f ′(sk) in Z/pk+1Z, which we
know exists because f ′(sk) and p are relatively prime by assumption.

Proof. Because sk+1 ≡ sk (mod pk), we have sk+1 = sk + pkt for some integer
t. By 4.1 we have f(sk+1) ≡ f(sk + pkt) ≡ f(sk) + f ′(sk)pkt (mod pk+1).
We want sk and sk+1 to be solutions, so f(sk) ≡ 0 (mod pk) and f(sk+1) ≡
0 (mod pk+1), so by the former equivalence we know f(sk)

pk is an integer, and by

the latter we know f(sk) + f ′(sk)pkt ≡ 0 (mod pk+1). Rearranging, we have

f ′(sk)t ≡ −f(sk)
pk (mod p). And because we know p - f ′(sk), there must be a

unique solution for t, specifically, t ≡ −(f
′(sk))

−1f(sk)
pk (mod p). Giving us:

sk+1 ≡ sk + pkt ≡ sk − f(sk)(f ′(sk))−1 (mod pk+1)
�
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This allows us to recursively generate a p-adic solution to f(x) provided
there is a solution to f(x) ≡ 0 (mod p) (as we can then generate compatible
solutions (mod p2), (mod p3) and so on). But there is a catch: p cannot be
2. In our proof of 4.2, we relied on the assumption that p - f ′(sk), and in our
consideration of the quadratic equations f(x) = x2 − c, we have f ′(sk) = 2sk.
If p > 2 non trivial solutions will definitionally be relatively prime to p, but
as we can see, if p = 2 we have a problem, so we will consider the 2-adic case
separately.

Lemma 4.3. There is a 2-adic solution to x2 = c if and only if c ≡ 1 (mod 8).

Proof. We must have c ≡ 1 (mod 2), and the squares of all odd numbers
(2n + 1)2 ≡ 4n(n + 1) + 1 ≡ 1 (mod 8), so if c 6≡ 1 (mod 8) , there can be
no 2-adic solution to x2 = c. Now we assume c ≡ 1 (mod 8). Of the residues in
Z/2kZ, there are 2k−3 multiples of 8, so there are 2k−3 residues ≡ 1 (mod 8).
Because all odd squares are ≡ 1 (mod 8), it is sufficient to show that there exist
2k−3 squares of odd numbers that are distinct modulo 2k to show that there is
a solution to x2 ≡ c (mod 2k) .
To achieve a contradiction, we will consider the set S containing the first
2k−3 odd numbers (which are all less than 2k−2). Suppose a, b ∈ S with
a2 ≡ b2 (mod 2k) and a > b. We have 2k | (a− b)(a+ b). Since a and b are odd,
either (a − b) or (a + b) is ≡ 2 (mod 4). Thus, one is divisible by two and not
four, making the other divisible by 2k−1. but we have 1 ≤ b < a ≤ 2k−2 < 2k−1,
so neither (a− b) nor (a+ b) can be divisible by 2k−1. We have a contradiction,
so we know every c ≡ 1 (mod 8) is equivalent modulo 2k to the square of some
odd number.
And furthermore, if we have found solutions to x2 ≡ c (mod 2k) to for two
consecutive values of k, s2k ≡ c (mod 2k) and s2k−1 ≡ c (mod 2k−1), we know

s2k ≡ c (mod 2k−1) so s2k ≡ s2k−1 (mod 2k−1), but for any solution sk we can

always have −sk is also a solution, so we can choose that sk ≡ sk−1 (mod 2k−1),
giving us a 2-adic solution. �

Wee are now ready to proceed to the proof of Fermat’s sum of two squares
theorem.

5 Proof of Fermat’s Sum of Squares Theorem

Let us remind you how we are going to tackle Fermat’s Sum of Two Squares
Theorem using Hasse-Minkowski Theorem. In the first section, we know that
the rational numbers that can be written in a form of sum of two squares
corresponds to the points on the curve x2 + y2 = n. Moreover, the associated
form is given by (X

Z )2 + (X
Z )2 = n ⇐⇒ X2 + Y 2 + nZ2 = 0. Applying Hasse-

Minkowski Theorem, it suffices to find solutions over R and Qp, such that p = 2
and each p dividing n.
Moreover, based on the discussion of Polynomial Congruences, from the third
section, we reduce n to be odd and square-free. More importantly, to solve the
quadratic form over Qp, it’s equivalent to solve a single congruence for each p.
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5.1 Lemmas Towards Fermat’s Sum of Squares Theorem

The first Lemma corresponds to the first case in Lemma 3.2.

Lemma 5.1. Let n be an odd integer. Then, the quadratic form q(X,Y, Z) =
X2 + Y 2 − nZ2 = 0 has a solution over Q2 if and only if n ≡ 1 mod 4.

Proof. (=⇒) If n ≡ 1 (mod 4) then n ≡ 1 (mod 8) or n ≡ 5 (mod 8). If
n ≡ 1 (mod 8), we know by 4.3 that x2 = n has a 2-adic solution, S, so (S, 0, 1)
is a solution to q over Q2. If n ≡ 5 (mod 8), we can construct a similar solution
(V, 2, 1), so we have V 2 = n− 4, where n− 4 ≡ 1 (mod 8), so we can let V be
the 2-adic solution guaranteed by 4.3.

(⇐=) To show that when n ≡ 3 mod 4, there is no solution over Qp, it’s
equivalent to show there is no nontrivial compatible system of congruences mod
2 and mod 4. From Example 2.3, we know that when n = 3, there is no
compatible solution. We can generalize this result to all n ≡ 3 (mod 4). Similar
to Example 2.3, we can always reduce the solution of X2 + Y 2 − nZ2 ≡ 0
mod 2 to (0, 0, 0) mod 4, which implies that it would be impossible to have a
nontrivial solution over Q2. �

The next Lemma corresponds to the case that p is an odd prime in Lemma
3.2. With lemma 3.1, we constrain n to be square free to get our desired result.

Lemma 5.2. Let n be an integer, and let p be a prime divisor of n, such that
p2 is not a divisor of n (in other words, n is square-free). Then, the quadratic
form q(X,Y, Z) = X2 + Y 2 − nZ2 = 0 has a solution over Qp if and only if
p ≡ 1 mod 4.

Proof. (=⇒)To start, notice that X2 + Y 2 − nZ2 ≡ X2 + Y 2 (mod p) because
p | n, so any solution (x, y, z) can have z be any non-zero integer. If we know
p ≡ 1 (mod 4) then we know −1 is a quadratic residue modulo p. This means
x2 = −1 (mod p) has a solution s, which means (s, 1, t) for any t 6= 0 is a
solution to q ≡ 0 (mod p) and by 4.2 we have that because q = 0 has a solution,
q has a solution over Qp.

(⇐=) Towards a contradiction, we assume p ≡ 3 mod 4 and the quadratic
form X2 + Y 2 − nZ2 = 0 has a nontrivial solution over Qp. Since by assump-
tion, p is a divisor of n, nZ2 (mod p) is always 0, then there exists a solution
(a1, b1, c1) ∈ Z3, such that a21 + b22 ≡ 0.
We claim that a1 and b1 are both 0 modulo p. Firstly, we show that one of
them has to be 0. Towards a contradiction, if a1 and b1 are all reduced residues
modulo p. Then, b1b1

−1 ≡ 1 mod p. Therefore, (ab1
−1)2 ≡ −1 mod p, which

contradicts the Euler’s identity that when p ≡ 3 mod 4, -1 is not a quadratic
residue modulo p. Moreover, if only one of a1 and b1 is zero modulo p, then it
contradicts the assumption that a21 + b22 ≡ 0 mod p. Therefore, both of them
are 0 modulo p.

Since we assume the quadratic form has a nontrivial solution over Qp, thus
c1 must be nonzero. We aims to find a contradiction that c1 is zero. Consider
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another solution of congruence a22+b22 ≡ 0 mod p2. Since the those the solution
in modulo p and modulo p2 form a p-adic number, it must be the case that those
two solutions are compatible. In other words, (a1, b1, c1) ≡ (a2, b2, c3) mod p2.
Thus, b2 ≡ b1 ≡ a1 ≡ a2 (mod p). And moreover, c1 ≡ c2 mod p.
Then, a22 + b22 ≡ nc22 ≡ 0 mod p2. Since by assumption n is not divisible by p2,
then it must be the case that c22 is congruent to zero modulo p2. It follows that
c1 ≡ c2 (mod p), which is our desired contradiction. �

5.2 Proof of Fermat’s Sum of Squares Theorem with Ra-
tional Solutions

Now we have all the building blocks for our proof of Fermat’s Sum of Squares
theorem. We will begin by making a statement about when there are rational
solutions (x, y) to the equation x2 + y2 = n for an integer n.

Theorem 5.3. There is a rational x and y solving the equation x2 + y2 = n
for n ∈ Z if and only if every prime factor p of n appears with an even power
in the prime factorization of n.

Proof. f(x, y) = x2+y2−n = 0 has a rational solution if and only ifQ(X,Y, Z) =
X2 + Y 2 − nZ2 = 0 has a non-trivial integral solution.
By 5.1 and 5.2 we know Q has a solution over Qp for p = 2 and p | n if and
only if p ≡ 1 (mod 4) (which implies n ≡ 1 (mod 4), the necessary condition for
Q2). Q clearly has solutions over the real numbers, so by the Hasse-Minkowski
theorem, Q has integer solutions if and only if p ≡ 1 (mod 4) for all p | n.

This means there is a rational solution to xx + y2 = n if and only if p ≡
1 (mod 4) for all p | n. And we have established that a solution to a square free
n implies a solution to xx +y2 = ns2 for any s ∈ N, so finally we have a solution
to x2 + y2 = n for n ∈ Z if and only if every prime factor p of n appears with
an even power in the prime factorization of n. �

5.3 The Integral Solutions of Fermat’s Sum of Squares
Theorem

We showed the existence of rational solutions for Fermat’s Sum of Two Squares
Theorem. Equivalently, we answered the following question: Let n > 1 be a fixed
natural number. Are there rational solutions to the quadratic form x2 +y2 = n?

But Fermat’s Sum of Two Squares is about the integral solutions. Thus, it’s
natural to solve the following question:
Let n > 1 be a fixed natural number. Are there rational solutions to the
quadratic form x2 + y2 = n? By the following proposition, we know those two
questions are essentially equivalent:
”The quadratic equation x2 + y2 = n has an integral solution if an only if it has
rational solution.”
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In ”Number Theory and Geometry”, the author proved it constructively on
page 322. We would not directly proved it here, since the proof uses a smart
trick to construct integer solutions by the known rational solutions. But I will
guide you through the thought process here. To prove this preposition, it suf-
fices to show the square-free part n’ of n is also a sum of two integers; i.e., if
n = n′s2 and n′ = x2 + y2, then n = (xs)2 + (ys)2. By Lemma 3.1, x2 + y2 = n
has rational solutions if and only if x2 + y2 = n′ has rational solutions. Then
we assume the rational solutions of x2 + y2 = n′ to be (a

c ,
b
d ). By bring cd to

the other side, we get n′(cd)2 = (ad)2 + (bc)2. We may assume ad and bc are
relatively prime, because we can divide both sides by gcd to make them rela-
tively prime. Relabel cd with µ, ad with α, and bc with β. Using the trick to
construct integer solutions, we can show n’ is a sum of two squares of integers.
Thus, we conclude that n has integral solutions implied by rational solutions.

Finally, we proved Fermat’s Sum of Two Squares Theorem with a small
detour by considering rational solutions. Through out the proof, the Hasse-
Minkowski Theorem plays a big rule in breaking down the problem into solutions
over p-adic fields, which are in a smaller scale to work with. There are many
other powerful theorems that can be simplified by Hasse-Minkowski Theorem,
like Lagrange’s Sum of Four Squares in the next section. We have no space to
show other applications of Hasse-Minkowski Theorem in other contexts. But at
least, readers can have a taste of how to use Hasse-Minkowski Theorem to solve
problems from this paper.

6 Sketch of a Proof For Lagrange’s Theorem

An argument similar to the one we used to prove Fermat’s theorem can be
used to prove Lagrange’s Four Squares theorem. Again, we must show for the
quadratic form L(X,Y, Z,W,A) = X2+Y 2+Z2+W 2−nA2, the equation L = 0
has solutions over Qp for p = 2 and p | n. Once we have done that, we use the
same bijection to deduce a rational solution (x, y, z, w) to x2 + y2 + z2 +w2 = n
for any integer n. Then one can show that a rational solution implies an integer
solution. We will use similar versions of the lemmas we have proved already.

Lemma 6.1. The quadratic form L(X,Y, Z,W,A) = X2 +Y 2 +Z2 +W 2−nA2

has a solution for L = 0 over Q2.

Proof. We know by 4.3 that x2 = c has a 2-adic solution if c ≡ 1 (mod 8) , so
if n ≡ 1 (mod 8) then (S1, 0, 0, 0, 1) is a solution to L over Q2 were S1 is the
solution to x2 = n over Q2. By carefully choosing values, we can manipulate
the expression so the left hand side is always a square, and the right hand side
is always 1 modulo 8, giving us a solution.

• If n ≡ 2 (mod 8), we can construct a similar solution (S2, 1, 0, 0, 1), so we
have S2

2 = n − 1, where n − 1 ≡ 1 (mod 8), so we can let S2 be the 2-
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adic solution guaranteed by 4.3. We can proceed similarly by constructing
solutions for each residue modulo 8.

• If n ≡ 3 (mod 8) we have a solution (S3, 1, 1, 0, 1) with S2
3 = n− 2.

• If n ≡ 4 (mod 8) we have a solution (S4, 1, 1, 1, 1) with S2
4 = n− 3.

• If n ≡ 5 (mod 8) we have a solution (S5, 2, 0, 0, 1) with S2
5 = n− 4.

• If n ≡ 6 (mod 8) we have a solution (S6, 2, 1, 0, 1) with S2
6 = n− 5.

• If n ≡ 7 (mod 8) we have a solution (S7, 2, 1, 1, 1) with S2
7 = n− 6.

• If n ≡ 0 (mod 8) we can divide n by 4 until it isn’t, and compensate by
multiplying the solution by the appropriate number of 2’s.

We have addressed every possibility for n, so the result is shown. �

In order to guarantee a p-adic solution for every prime that divides n, by 4.2,
we only need to show that there is a solution to the congruence L ≡ 0 (mod p)
for an arbitrary p, dividing n. Which amounts to showing X2+Y 2+Z2+W 2 ≡
0 (mod p) has a solution for an arbitrary p > 2. If p ≡ 1 (mod 4) we obtain
a solution using the quadratic character of −1 as before. If p ≡ 3 (mod 8) we
can use the quadratic character of −2. But if p ≡ −1 (mod 8), there is more
sophisticated work to do, which is beyond the scope of this paper.
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