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Abstract

Based on Fourier’s idea of writing functions as trigonometric series, we first find the explicit formula of the
Fourier Coefficients by assuming that the convergence exists. We understand these coefficients in the context of
an inner product space and give two examples. Moreover, we investigate the pointwise convergence of Fourier
series of continuous functions. Then, we pay closer attention to the more general result of the convergence of
Fourier series in L2. As our final takeaway, we conclude that the convergence of Fourier series is less robust than
that of power series, and appreciate the nice properties of the Hilbert space L2.
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1 Introduction

Since the arrival of power series, physicists have found great advantage of understanding complicated functions as
infinite series of familiar functions with tuned coefficients. However, the convergence of power series is generally hard
to satisfy and the harmonic motions in mechanics and thermodynamics inherently request the usage of trigonometric
series.

In Joseph Fourier’s 1822 treatise [3], “The Analytical Theory of Heat”, he boldly claims that “There is no
function f(x) or part of a function, which cannot be expressed by a trigonometric series.” While physicists were at
ease using Fourier’s trigonometric series to analyze their functions, mathematicians at the nineteenth century were
challenged by Fourier’s bold assertion and determined to attach mathematical rigor to the types of functions that
can be “expressed” by trigonometric series. Indeed, the creation of Lebesgue measure and the Lebesgue integral was
motivated by Fourier’s assertion.

Similar to the definition of power series, trigonometric series are defined as an infinite sum of trigonometric
functions as components.

Definition 1.1. A trigonometric series is defined as

a0 +

∞∑
n=1

an cos(nx) + bn sin(nx).

In this series, the functions,

{1, cos(x), sin(x), cos(2x), sin(2x), cos(3x), sin(3x), . . .}

serve as the components.
Therefore, to investigate the question asked by Fourier, we will first assert that there is a sequence of real numbers

{an}∞n=0 and {bn}∞n=1, such that

f(x) = a0 +

∞∑
n=1

an cos(nx) + bn sin(nx), (1)

where the infinite series is assumed to be convergent. We make this assumption to find a candidate for these two
sequences. After we have found these coefficients, we note that “convergence” can vary in different contexts. In our
paper, we will discuss pointwise convergence and convergence in L2 space.

2 Trigonometric Series

2.1 Periodicity

One nice property of the class of trigonometric functions like cos and sin is their common period of 2π. Therefore,
for cos(nx), and sin(mx) with arbitrary m,n ∈ N, they must be periodic on the interval (−π, π].

Then, in the following discussions on orthogonality, Fourier coefficients, and convergence tests, we restrict our
attention to the behavior of the series on the interval (−π, π]

f(x) = f(x+ 2kπ), k ∈ Z,
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by the periodicity of f .
Note that the interpretation of functions as abstract mappings between inputs and outputs was not the common

in Fourier’s time. Conventionally, functions were interpreted as an universal formula that governs the behavior of
functions on the entire domain. In this context, Fourier’s treatment of trigonometry series in one period had some
controversies. To avoid confusions, Fourier gave his understanding of functions as “a succession of values or ordinates,
each of which is arbitrary” [3]. With such a general definition of functions, the functional values do not subject to a
common formula, which validates studying series in only one period.

2.2 Orthogonality of Inner products of trigonometric components

We first observe that the integral of trigonometric functions have special values, which will help calculate the
Fourier coefficients in the next section.

Lemma 2.1. For all n ∈ N, ∫ π

−π
cos(nx)dx = 0 and

∫ π

−π
sin(nx)dx = 0.

Proof. Using Riemann integration we have that,∫ π

−π
cos(nx)dx =

1

n
(sin(nπ)− sin(−nπ)) = 0

since sin(nπ) = 0 for all n ∈ N. On the other hand,∫ π

−π
sin(nx)dx =

1

n
(− cos(nπ) + cos(−nπ)) =

1

n
(− cos(nπ) + cos(nπ)) = 0.

since cosine is an even function. �

Lemma 2.2. For all n ∈ N, ∫ π

−π
cos2(nx)dx = π and

∫ π

−π
sin2(nx)dx = π. (2)

Proof. Since sin2(nx) is integrable, we can use integration by parts with u = sin(nx) and dv = sin(nx) to get,∫
sin2(nx)dx = − 1

n
sin(nx) cos(nx) +

∫
cos2(nx)dx+ C.

Since sin2(nx) = 1− cos2(nx) and since cos2(nx) is integrable,∫
1− cos2(nx) = − 1

n
sin(nx) cos(nx) +

∫
cos2(nx)dx+ C

and,

x−
∫

cos2(nx) = − 1

n
sin(nx) cos(nx) +

∫
cos2(nx)dx+ C

which means that, by solving for
∫

cos2(nx)dx,∫
cos2(nx) =

x

2
+

1

4n
sin(2nx) + C.

By replacing in the first equation, ∫
sin2(nx)dx =

x

2
− 1

4n
sin(2nx) + C.

Hence, ∫ π

−π
sin2(nx)dx =

π

2
− 1

4n
sin(2nπ)−

(
−π
2
− 1

4n
sin(−2nπ)

)
= π.

because sin(2πn) = 0 for all n ∈ Z.
Finally, ∫

cos2(nx) =
π

2
− 1

4n
cos(2nπ)−

(
−π
2
− 1

4n
cos(−2nπ)

)
= π
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because,
1

4n
cos(−2nπ) =

1

4n
cos(2nπ)

as cosine is an even function. �

Notice that Lemma 2.2 can be understood more generally in the context of the inner product of the L2 space.

Recall that 〈f, g〉 =
∫ b
a
fg, where f, g ∈ L2[a, b], is an inner product that satisfies the four conditions for being an

inner product. Then, Lemma 2.2 is just an example of the third condition 〈v, v〉 ≥ 0, since the square of sin(nx) and
cos(nx) are both positive.

Lemma 2.3 (Orthogonality relationship part i). For all m,n ∈ N,∫ π

−π
cos(mx) sin(nx)dx = 0. (3)

Proof. Suppose that m 6= n. Let u = sin(nx) and dv = cos(mx) so that, by integration by parts,∫
cos(mx) sin(nx)dx =

1

m
sin(mx) sin(nx)− n

m

∫
cos(nx) sin(mx)dx+ C.

Let u = cos(nx) and dx = sin(mx) so that by integration by parts,∫
cos(nx) sin(mx)dx = − 1

m
cos(nx) cos(mx)− n

m

∫
cos(mx) sin(nx) + C

and replacing this quantity in the equation above,∫
cos(mx) sin(nx)dx =

1

m
sin(mx) sin(nx) +

n

m2
cos(nx) cos(mx) +

n2

m2

∫
cos(mx) sin(nx) + C.

Solving by the integral, ∫
cos(mx) sin(nx)dx =

m sin(mx) sin(nx) + n cos(nx) cos(mx)

m2 − n2
+ C.

Then,∫ π

−π
cos(mx) sin(nx)dx =

m sin(mπ) sin(nπ) + n cos(nπ) cos(mπ)

m2 − n2
− m sin(−πm) sin(−πn) + n cos(−πn) cos(−πm)

m2 − n2

= 0.

because sin(πn) = sin(−πn) = 0 and cos(nπ) = cos(−nπ).
Now suppose that n = m. Then,∫ π

−π
cos(nx) sin(nx)dx = − 1

2n
(cos2(nπ)− cos2(−nπ)) = 0

because cosine is an even function. �

Lemma 2.4 (Orthogonality relationship part ii). For every m,n ∈ N such that m 6= n,∫ π

−π
cos(mx) cos(nx)dx = 0 and

∫ π

−π
sin(mx) sin(nx)dx = 0. (4)

We omit some of the details of this proof, as they are similar to the proof of the previous lemma.

Proof. By doing integration with parts twice,∫
cos(mx) cos(nx) =

1

n
sin(nx) cos(mx) +

m

n

(
− 1

n
cos(nx) sin(mx)− m

n

∫
cos(nx) cos(mx)

)
+ C.

Solving by
∫

cos(nx) cos(mx) we get,∫
cos(nx) cos(mx) =

n sin(nx) cos(mx)−m sin(mx) cos(nx)

n2 −m2
+ C.
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Thus,∫ π

−π
cos(nx) cos(mx) =

n sin(nπ) cos(mπ)−m sin(mπ) cos(nπ)

n2 −m2
− n sin(−nπ) cos(−mπ)−m sin(−mπ) cos(−nπ)

n2 −m2

Since sin(nπ) = 0 for all n ∈ Z, ∫ π

−π
cos(nx) cos(mx)dx = 0.

Similarly by integrating twice,∫
sin(mx) sin(nx) =

m sin(nx) cos(mx)− n sin(mx) cos(nx)

n2 −m2
+ C

so that,∫ π

−π
sin(mx) sin(nx) =

m sin(nπ) cos(mπ)− n sin(mπ) cos(nπ)

n2 −m2
− m sin(−πn) cos(−πm)− n sin(−πm) cos(−πn)

n2 −m2
.

Since sin(nπ) = 0 for all n ∈ Z, ∫ π

−π
sin(nx) sin(mx)dx = 0.

�

Notice that Lemma 2.3 and 2.4 together are the orthogonality relationships for the functions {1, cos(x), sin(x), . . .}
in L2 with the inner product 〈f, g〉 =

∫ b
a
fg. Since the inner product (dot product) of two distinct vectors in Rn is

zero when they are orthogonal, if the inner product (integral) of two distinct functions in L2 is zero, we call those
two functions orthogonal.

Moreover, we learned in linear algebra that all vectors that are pairwise orthogonal form an orthogonal basis
in a finite dimensional vector space. However, L2 is an infinite dimensional vector space. Thus, with Lemma 2.3
and 2.4, proving the components cos(nx) and sin(nx) form an orthogonal basis is equivalent to showing that any
function in L2 has a Fourier series representation. Fortunately, as we will show later, {cos(nx), sin(nx)} is indeed is
an orthogonal basis for L2.

Finally, using {cos(nx), sin(nx)} as an orthogonal basis for L2, Lemma 2.3 and 2.4 are generalized in the following
notation of the inner product of L2.

i. for all m,n ∈ N, 〈cos(mx), sin(nx)〉 = 0;

ii. for m 6= n ∈ N, 〈cos(mx), cos(nx)〉 = 〈sin(mx), sin(nx)〉 = 0.

This notation will be helpful to interpret the calculation of Fourier coefficients.

2.3 Finding Fourier coefficients ai and bi

Lemma 2.5. Suppose that there exists an integrable (the particular definition depends on the context) function on
[−π, π] such that, there exists sequences {an}∞n=0 and {bn}∞n=1 with∫ π

−π
f(x)dx = a0 +

∞∑
n=1

an cos(nx) + bn sin(nx).

Then,

a0 =
1

2π

∫ π

−π
f(x)dx (5)

and,

am =
1

π

∫ π

−π
f(x) cos(mx)dx and bm =

1

π

∫ π

−π
f(x) sin(mx)dx.
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Proof. By assuming that the summation can be interchanged with the integral (a practical way to find the Fourier
coefficients),∫ π

−π
f(x) =

∫ π

−π

[
a0 +

∞∑
n=1

an cos(nx) + bn sin(nx)

]
dx = πa0 +

∞∑
n=1

(
an

∫ π

−π
cos(nx)dx+ bn

∫ π

−π
sin(nx)dx

)

= πa0 +

∞∑
n=1

an · 0 + bn · 0 = πa0,

where
∫ π
−π cos(nx)dx =

∫ π
−π sin(nx)dx = 0 by Lemma 2.1. By dividing both sides by π, we get Eq. 5.

Then, to get am, we evaluate the integral of f(x) cos(mx),∫ π

−π
f(x) cos(mx) =

∫ π

−π
a0 cos(mx)dx+

∞∑
n=1

[
an

∫ π

−π
cos(mx) cos(nx)dx+ bn

∫ π

−π
cos(mx) sin(nx)dx

]

= 0 + am

∫ π

−π
cos(mx) cos(mx)dx+

∞∑
n=1,n6=m

[
an

∫ π

−π
cos(mx) cos(nx)dx+ bn

∫ π

−π
cos(mx) sin(nx)dx

]
= amπ,

where
∫ π
−π cos(mx) cos(mx)dx = π by Lemma 2, and

∫ π
−π cos(mx) cos(nx)dx +

∫ π
−π cos(mx) sin(nx)dx = 0 (n 6= m)

by Lemma 3 and 4, which is also the orthogonal relationship of Fourier components with respect to inner products
of L2.

Similarly, to get bm, we evaluate the integral of f(x) sin(mx),∫ π

−π
f(x) sin(mx) =

∫ π

−π
a0 sin(mx)dx+

∞∑
n=1

[
an

∫ π

−π
sin(mx) cos(nx)dx+ bn

∫ π

−π
sin(mx) sin(nx)dx

]

= 0 + bm

∫ π

−π
sin(mx) sin(mx)dx+

∞∑
n=1,n6=m

[
an

∫ π

−π
sin(mx) cos(nx)dx+ bn

∫ π

−π
sin(mx) sin(nx)dx

]
= bmπ,

where
∫ π
−π sin(mx) sin(mx)dx = π by Lemma 2, and

∫ π
−π cos(mx) cos(nx)dx +

∫ π
−π cos(mx) sin(nx)dx = 0 (n 6= m)

by the orthogonal relationship. �

In the context of L2 spaces with the inner product, Fourier coefficients can be expressed in the following ways:

i. a0 = 1
2π

∫ π
−π f(x)dx =

〈f, 1〉
〈1, 1〉 ;

ii. an = 1
π

∫ π
−π f(x) cos(nx)dx =

〈f, cos(nx)〉
〈cos(nx), cos(nx)〉 ;

iii. bn = 1
π

∫ π
−π f(x) sin(nx)dx =

〈f, sin(nx)〉
〈sin(nx), sin(nx)〉 .

Here, the Fourier coefficients of a certain function can be understood algebraically as the projection of the function
onto the presumed basis {1, cos(x), sin(x), . . .} with respect to the inner product. Thus, the ai and bi are the
coordinates of the function with respect to {1, cos(x), sin(x), . . .}. Furthermore the Fourier series of the function is a
linear combination of {1, cos(x), sin(x), . . .}. Thus, if the Fourier series converges to the function, it is a representation
of f with respect to the trigonometric orthogonal basis {cos(nx), sin(nx)} in the infinite space L2.

2.4 Examples of Fourier series

With Lemma 2.5 giving the formula for finding the Fourier coefficients, we discuss two concrete examples of
Fourier series. Besides, we make the claim on whether the partial sums must converge uniformly.

Example 2.1.

f(x) =


1 if 0 < x < π

0 if x = 0 or x = π

−1 if −π < x < 0
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First observe that f(x) is an odd function, which means that integrating f(x) over the domain (−π.π] will be zero
since postive and negative parts are canceled out.

Thus, by Lemma 2.5,

a0 =
1

2π

∫ π

−π
f(x)dx = 0.

Furthermore, since the product of an even function and and odd function is odd, we have

an =
1

π

∫ π

−π
f(x) cos(nx)dx = 0.

Then, we need to evaluate the following integral to find bn,

bn =
1

π

∫ π

−π
f(x) sin(nx)dx =

2

π

∫ π

0

f(x) sin(nx)dx,

since f(x) sin(nx) is even. Thus,

bn =

{
4/nπ if n is odd

0 if n is even

Combining those results together, we derive the Fourier series

f(x) =
4

π

∞∑
n=0

1

2n+ 1
sin((2n+ 1)x),

where the part (2n+ 1) clarifies the case when n is odd.
As a side note, we discussed whether the partial sum of the Fourier series can converge to f(x) uniformly. If

it does converge uniformly, this function f(x) may motivate us to conjecture that the uniform convergence is the
necessary condition for the existence of Fourier Series. Unfortunately, the convergence of partial sums of f(x) is
not uniform on any interval containing 0. To see the reason, first notice that since any partial sum is continuous
on any interval containing 0, then if uniform convergence holds, f(x) must also be continuous on the same interval.
However, f(x) is defined to be discontinuous, which is the desired contradiction.

Example 2.2.
g(x) = |x|

Need to find the Fourier Series of g(x).

First observe that g(x) is an even function on (−π, π]. Then, since the product of an even and an odd function
is odd, we have

bn =
1

π

∫ π

−π
g(x) sin(nx)dx = 0.

Then, we proceed to evaluate a0 and an as

a0 =
1

2π

∫ π

−π
g(x)dx =

1

π

∫ π

0

xdx =
π

2
,

and

an =
1

π

∫ π

−π
g(x) cos(nx)dx =

2

π

∫ π

0

x cos(nx) =
2(cos(nπ)− 1)

n2π
.

By the property of cos function, (cos(nπ)− 1) = 0 when n is even. Therefore,

an =

{
− 4
n2π

if n is odd

0 if n is even

Combining those results together, we derive the Fourier series

g(x) =
π

2
− 4

π

∞∑
n=0

1

(2n+ 1)2
cos((2n+ 1)x),
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where the part (2n+ 1) clarifies the case when n is odd.

Then, from the formula, we observe that the partial sums of the Fourier series of g converge. Notice that the
term in the partial sum ∣∣∣∣ 1

(2n+ 1)2
cos((2n+ 1)x)

∣∣∣∣ ≤ 1

(2n+ 1)2
,

for each n ∈ N and x ∈ (π, π]. Moreover, the infinite series
∑∞
n=1

1
(2n+1)2 converges. Then, by applying the

Weierstrass M-Test (Corollary 6.4.5, Abbott), partial sums of the Fourier series converge uniformly on (π, π].

3 Convergence Theorems

In this section, we investigate Fourier’s question of “which functions can be expressed as a trigonometric series”
[3]. First, notice that there are many types of convergence of functions such as point-wise convergence, uniform
convergence, and convergence in Lp spaces. The more general the type of convergence is, the more functions there
are that we can express as a limit of trigonometric series.

In our following discussion, we will first consider the relatively weak pointwise convergence of functions of con-
tinuous functions. Then, we turn our attention to convergence of functions in the especially nice Hilbert space L2

(an inner product space with a completed induced norm with respect to the space). To facilitate our discussion, we
first define partial sums of Fourier series.

Definition 3.1. For f ∈ L2[−π, π] the sequence {an}∞n=0 and {bn}∞n=1 as defined in Lemma 2.5 are the Fourier
coefficients for f . We define the Fourier series for f as,

a0
2

+

∞∑
k=1

(ak cos(kx) + bk sin(kx)).

Let sn(x) denote the n-th partial sum of the Fourier series of f ,

sn(x) =
a0
2

+

n∑
k=1

(ak cos(kx) + bk sin(kx)).

3.1 Pointwise Convergence of Fourier Series

Theorem 3.1 (Abbott, [1]). Let f(x) be continuous on (−π, π], and let sn(x) as the nth partial sum of the Fourier
Series as defined above. Let an and bn be the coefficients defined in Lemma 2.5. Then,

lim
n→∞

sn(x) = f(x),

where the limit denotes the pointwise limit at any x ∈ (−π, π] where f ′(x) exists.

The proof of the Theorem is omitted, but we will try to sketch the proof for the more powerful type of Fourier
Series convergence theorem in the next subsection. Before turning our heads to the convergence in L2, it is necessary
to check which functions have a Fourier Series representation by applying Theorem 3.1. We will also discuss how
Fourier series can be compared to the familiar power series. First, we notice that the functions in Theorem 3.1 are
restricted to be continuous. Thus the function g(x) = |x| mentioned in Example 2.2 has a Fourier Series representa-
tion. However, piece-wise continuous functions like the one we analyzed in Example 2.1 are not guaranteed to have a
Fourier Series representation because the function is not continuous on the entire domain. But still, we may improve
Theorem 3.1 to a more general version on pairwise continuous functions to include more examples. However, there
are a lot of discontinuous functions which cannot be studied with Theorem 3.1. Thus, Fourier’s claim that “There is
no function f(x) or part of a function, which cannot be expressed by a trigonometric series,” is far from being proved.

Moreover, we also observe that the existence of a Fourier Series representation is far less robust than the power
series. Theorem 6.5.1 and 6.5.2 in Abbott [1] together imply that a function has a power series representation on the
interval [−r, r] if

∑∞
n=0 anx

n converges at a point x0 = R, where 0 < r < R. Thus, to test whether the power series
converges to a function on an interval, one has to use convergence tests at some x, while to test whether the Fourier
series converges, one needs to check the property of the target function with respect to the type of convergence of
interest. Therefore, the convergence of Fourier series is more powerful than the convergence of power series in the
sense that the convergence is more versatile.
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3.2 Convergence of Fourier Series in L2

We want to prove that any f ∈ L2[−π, π] satisfies that it is “equal” to its Fourier series. In this particular context,
we want the sn(x) to converge to f(x) with respect to the L2 norm. In particular we want to show,

lim
n→∞

‖f − sn‖2 = 0

which means,

f(x) =
a0
2

+

∞∑
k=1

(ak cos(kx) + bk sin(kx))

inside of this framework. Before providing a proof of this result, we will list some useful facts. We will not provide
formal proofs of these facts, instead, we will supply some proof ideas.

Proposition 3.1 (Nelson, [2]). Let f ∈ L2[−π, π]. Then for each positive integer n,

‖f − sn‖22 = ‖f‖22 −

(
πa20
2

+ π

n∑
k=1

(a2k + b2k)

)
,

where a0, a1, b1, a2, b2, . . . are the Fourier coefficients defined above and sn(x) is the n-th partial sum of the Fourier
series for f .

The above fact is proven using (f−sn)2 = f2−2fsn+(sn)2 and thus, ‖f−sn‖22 =
∫ π
−π f

2−2
∫ π
−π fsn+

∫ π
−π(sn)2.

Note that most we know the value of the terms in the expansion of
∫ π
−π(sn)2 by the lemmas in section 2.2 of this

paper. After distributing f inside of the sum in sn, we can note that the terms in
∫ π
−π fsn resemble the coefficients

found in Lemma 2.5.

Proposition 3.2 (Nelson, [2]). Let f ∈ L2[−π, π]. Let a0, a1, b1, a2, b2, . . . be the Fourier coefficients for f . Then
the series

∑∞
k=1(a2k + b2k) converges and

πa20
2

+ π

∞∑
k=1

(a2k + b2k) ≤ ‖f‖22.

This result is in reality a corollary of the previous proposition. The central idea is that, ‖f − sn‖22 ≥ 0 so that,

πa20
2

+ π

n∑
k=1

(a2k + b2k) ≤ ‖f‖22

for every n by Proposition 3.1. Then we can treat
∑n
k=1(a2k+b2k) as a sequence and apply the algebraic limit theorem

and the order limit theorem to conclude the aforementioned inequality.

Definition 3.2. For a positive integer n, a trigonometric polynomial of degree n is a function Tn of the form,

Tn(x) = A0 +

n∑
k=1

(Ak cos(kx) +Bk sin(kx))

where A0, A1, B1, A2, B2, . . . are real numbers.

Note that for a function f ∈ L2[−π, π], the n-th partial sum of its Fourier series is an example of a trigonometric
series of degree n. The following result asserts that given f ∈ L2[−π, π], sn is the trigonometric polynomial of degree
n closest to f . Here, the notion of closeness is given by the L2 norm.

Theorem 3.2 (Nelson, [2]). Let f ∈ L2[−π, π] and let Tn be any trigonometric polynomial of degree n. Then,

‖f − Tn‖2 ≥ ‖f − sn‖2

where sn is the n-th partial sum of Fourier series for f .

Since ‖f − Tn‖2 and ‖f − sn‖2 are positive real numbers, the goal is to show that ‖f − Tn‖22 − ‖f − sn‖22 ≥ 0.
For this, one can see that ‖f − Tn‖22 =

∫ π
−π f

2 − 2
∫ π
−π fTn +

∫ π
−π(Tn)2. Then observe that we know the value of the

terms in the expansion of
∫ π
−π(Tn)2 by the lemmas in section 2.2 of this paper. After distributing f inside of the

sum in Tn, we can note that the terms in
∫ π
−π fTn resemble the coefficients found in Lemma 2.5. After that, one can

use Proposition 3.1 and algebraic manipulations to show that ‖f − Tn‖22 − ‖f − sn‖22 ≥ 0.
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Theorem 3.3 (Nelson, [2]). Let p ≥ 1 and f ∈ Lp[a, b]. For every ε > 0 there exists a continuous function g defined
on [a, b] such that ‖f − g‖p < ε.

The proof of this result is in Chapter 3.3 of our book, and it says that any function in Lp[a, b] can be approximated
by a continuous function g. Geometrically, this means that there is a continuous function g “near” f with respect
to the Lp norm. In fact we can do better,

Corollary 3.3.1 (Nelson, [2]). Let f ∈ Lp[a, b] for p ≥ 1. Given two real numbers A and B, and ε > 0, there is a
continuous function g defined on [a, b] with g(a) = A and g(b) = B, such that ‖f − g‖p < ε..

Theorem 3.4 (Nelson, [2]). Let f be continuous on [−π, π] with f(−π) = f(π). For each positive integer n, define

σn(x) =
1

n

n−1∑
k=0

sn(x)

where sn(x) is the n-th partial sum of the Fourier series for f . Then the sequence of functions σn(x) converges
uniformly to f on [−π, π].

The proof of this result studies these functions,

Definition 3.3. For a positive integer n, the n-th Dirichlet kernel is,

Dn(t) =
1

2
+

n∑
k=1

cos(kt).

By convention, D0(t) = 1
2 . And the n-th Fejér kernel is

Kn(t) =
1

n

n−1∑
k=0

Dn(x).

As a side note, Dn(t) is an even periodic function with,∫ π

0

Dn(t)dt =
π

2
,

and Kn(t) is also periodic with, ∫ π

0

Kn(t)dt =
π

2
.

Corollary 3.4.1 (Nelson, [2]). Let f be continuous on [−π, π] with f(−π) = f(π). For each positive integer n,
define

σn(x) =
1

n

n−1∑
k=0

sn(x)

where sn(x) is the n-th partial sum of the Fourier series for f . Then,

lim
n→∞

‖σn − f‖2 = 0.

The previous theorem asserts that σn → f uniformly, which means that |σn − f |2 → 0 uniformly. Thence, the
previous result follows by Theorem 7.4.4 in Abbott [1].

Now we are ready to state our final result.

Theorem 3.5. Let f ∈ L2[−π, π]. Let sn(x) equal the n-th partial sum of the Fourier series for f . Then the sequence
sn converges to f with respect to the L2 norm. In other words,

lim
n→∞

‖sn − f‖2 = 0.
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Proof. Let ε > 0. By corollary 3.2.1 there is a continuous function g, where g(−π) = g(π) (we are free to pick both
values, but here we are content with g(−π) being equal to whatever g(π) is) and,

‖f − g‖2 <
ε

2
.

Let σn be the function defined in Theorem 3.3, but for g. That is,

σn(x) =
1

n

n−1∑
k=0

hk(x),

where hk is the k-th partial sum of the Fourier series for g. Since g is continuous and g(−π) = g(π), we can use
Corollary 3.3.1 to state,

lim
n→∞

‖g − σn‖2 = 0.

Thus there exists a positive integer N such that for n ≥ N ,

‖g − σn‖2 <
ε

2
.

Thus, let n ≥ N . Note that σn+1(x) is a trigonometric polynomial of degree n, as the largest trigonometric polynomial
in the sum in the definition of σn+1 is hn(x). Thus by Theorem 3.1 and Minkowski’s inequality,

‖f − sn‖2 ≤ ‖f − σn+1‖2
= ‖f − g + g − σn+1‖2
≤ ‖f − g‖2 + ‖g − σn+1‖2

<
ε

2
+
ε

2
= ε.

�

Corollary 3.5.1. Let f ∈ L2[−π, π]. Let a0, a1, b1, a2, b2, . . . be the Fourier coefficients for f . Then,

πa20
2

+ π

∞∑
k=1

(a2k + b2k) = ‖f‖22.

Proof. From Proposition 3.1, we have that for every n,

‖f − sn‖22 = ‖f‖22 −

(
πa20
2

+ π

n∑
k=1

(a2k + b2k)

)
.

The result follows from taking the limit on both sides and using the previous theorem. �

We end out discussion of Fourier series with the following remarks.

Theorem 3.1 is a weaker version of Theorem 3.5, because the former requires that the function f be continuous
on (−π, π]. Note that the function f2 is also continuous, and thus that it is Riemann and Lebesgue integrable on
that interval. Then f ∈ L2(−π, π], and the result of Theorem 3.1 follows by applying Theorem 3.5. Then Theorem
3.5 implies Theorem 3.1.

On the other hand, recall that from our earlier remarks, that,

α = {1, cos(x), sin(x), cos(2x), sin(2x), . . .},

is a list of vectors in L2[−π, π] that are all “pairwise” orthogonal to each other. Furthermore, given a function
f ∈ L2[−π, π] the coefficients ai and bi are the scalars that arise from projecting f onto each of the vectors in α (this
is what we usually do in the finite dimensional case). Thus, with a Linear Algebra lens, we note that the Fourier
series of f is the same as writing f as a linear combination of the vectors in α. Thus, Theorem 3.5 tells us that in
fact, every f ∈ L2[−π, π] can be written as the linear combination of the vectors in α. This linear combination must
be unique by Theorem 3.2, because any other trigonometric series that is not the Fourier series is further from f
than the Fourier series. The vectors in α are linearly independent by virtue of being orthogonal, so that the linear
algebra interpretation of Theorem 3.5 is that α forms a basis of L2[−π, π]. This result is not as straight forward
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as it previously appeared to us, because infinite vector spaces do not necessarily have the same nice bases as finite
dimensional vector spaces, even ones with inner products.

With Rafe we discussed the importance of this result being done in L2[π, π]. The first thing that comes to mind
when thinking about L2[π, π] is that it is the only Lp[−π, π] space that is also a Hilbert space, but we looked in vain
to see where, if at all, completeness was used in this proof.

Finally, we will describe a bird’s-eye view of the proof of Theorem 3.5. This proof uses three main results:
Theorem 3.2, Theorem 3.3 (disguised as Corollary 3.3.1), and Theorem 3.4 (disguised as Corollary 3.4.1). As for the
two remaining results of this section, note that Proposition 3.1 is used to prove Theorem 3.2 and Proposition 3.2 is
a weaker version of Corollary 3.5.1 (In a sense, Proposition 3.2 is a consolation prize if Theorem 3.5 were not true).

How do these three Theorems interact with each other to prove Theorem 3.5? The first key step is Theorem 3.4,
as it claims that for a continuous g, there is a trigonometric series σ that converges absolutely to g. This result, in
reality, is the only result in which we have directly prove the convergence of a trigonometric series, and it could be
argued that here is were all of the work happens in the proof of Theorem 3.5 (there is a lot of work done to prove
Theorem 3.3, as well).

Thus, Theorem 3.4 says that any function in L2[−π, π] can be approximated by a continuous function g, for
which there is a trigonometric function that converges to g. Thus, using Theorem 3.2, we can bound the distance of
f to sn, by the distance between f and σn+1, which is in turn bounded by the approximation of f with g and the
convergence of g to σn+1.

In a way, this proof says that we can show that f is the limit of its Fourier series, because we can approximate
f to a periodic continuous function g, that in turn is a limit of a trigonometric series. Because the Fourier series
cannot be further from f than the distance f is from g and the trigonometric series, f must be arbitrary close to its
Fourier series.
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