
(CO)HOMOLOGY AND TOPOLOGICAL COMPLEXITY

BRYAN BOEHNKE AND SHUHANG XUE

1. Preliminaries

1.1. Homotopy Equivalence. Given topological spaces X and Y , we are aided by a sense of

equivalence which broadly captures the shape of these spaces. The notion of homeomorphism may

be familiar, where two spaces are homeomorphic if there exists a continuous map from one to the

other with a continuous inverse. In our case, we are interested in a broader sense of equivalence,

and this is the notion of homotopy equivalence. To begin, we have the following definitions:

Definition 1.1. Two maps f, g : X → Y are homotopic if there exists a continuous map F :

X × I → Y such that F (x, 0) = f(x), F (x, 1) = g(x) for all x ∈ X. In this case, we write f ' g.

Definition 1.2. Two spaces X and Y are homotopy equivalent if there exist maps f : X → Y and

g : Y → X such that fg and gf are homotopic to the identities on Y and X, respectively.

From these preliminary definitions, we can note that homeomorphism is a special case of homo-

topy equivalence: taking g = f−1 (since f is a continuous map with continuous inverse), we have

that the compositions fg and gf are equal (so homotopic) to the identity maps on their respective

spaces.

Next, we can establish the following definition:

Definition 1.3. A space X is contractible if it is homotopy equivalent to a point.

As a couple of early examples, Rn is a contractible space, while Sn is not. In our work with

topological complexity, we will see that many (if not all) spaces of interest are not contractible. In

particular, it turns out that every contractible space has topological complexity of 1, and we will

make all of these ideas precise in the next section.

1.2. Algebraic Preliminaries. Next, we will introduce the algebraic concepts of exact sequences

and tensor products, both of which will ultimately prove useful in our work with homology and

cohomology.
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Definition 1.4. A sequence of groups and homomorphisms

· · · An+1 An An−1 . . .
αn+1 αn αn−1

is exact if kerαn = imαn+1.

Beyond its definition, the exactness of a sequence can allow us to deduce a number of properties

of groups and homomorphisms in between them.

Corollary 1.5. Given groups A,B,C and group homomophisms φ : A → B and ψ : B → C, we

have the following:

(1) If A
φ−→ B −→ 0 is exact, then φ is surjective.

(2) If 0 −→ A
φ−→ B is exact, then φ is injective.

(3) If 0 −→ A
φ−→ B −→ 0 is exact, then φ is an isomorphism.

(4) If 0 −→ A
φ−→ B

ψ−→ C −→ 0 is exact, then C ≈ B/ kerψ = B/ imφ

In particular, the first two statements follow immediately from the definition, the third follows

from the first two, and the fourth comes from the First Isomorphism Theorem.

Next, we give a definition of tensor product of abelian groups.

Definition 1.6. For abelian groups A,B, the tensor product A ⊗ B is generated by elements of

the form a⊗ b, with a ∈ A and b ∈ B, such that the following two properties hold:

(1) (a+ a′)⊗ b = a⊗ b+ a′ ⊗ b, and

(2) a⊗ (b+ b′) = a⊗ b+ a⊗ b′.

An extra properties (na)⊗ b = n(a⊗ b) = a⊗ nb directly follows from property (1) and (2).

Theorem 1.7. A bilinear map φ : A×B → C induces a homomorphism Φ : A⊗B → C given by

a⊗ b 7→ φ(a, b).

Proof. It suffices to show that the induced relation respects the two properties of tensor product.

To this end, observe that Φ((a+ a′)⊗ b) = φ(a+ a′, b) (by the definition of Φ) = φ(a, b) + φ(a′, b)

(by the property of a bilinear map) = Φ(a⊗ b) + Φ(a′ ⊗ b) (by definition again). Similarly, we can

show that Φ(a ⊗ (b + b′)) = Φ(a ⊗ b) + Φ(a ⊗ b′). Therefore, Φ is the induced homomorphism by

the definition a⊗ b 7→ φ(a, b). �

The theorem can be applied to the cup product for cohomology groups so that an induced

homomorphism is guaranteed by the tensor product, which will be discussed in details soon.
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1.3. Homology and Cohomology. Homology is a general way defined to associate groups to a

topological space. One type of homology is simplicial homology. Although simplicial homology is

restricted to CW-complexes, it is more computationally friendly than its generalization –– singular

cohomology. Here, we give a construction of homology groups for S1.

Example 1.8. Here, we first construct the free abelian group generated by n-simplices of S1. Note

that a circle can be constructed as a 1-cell with two end points being equivalent. Therefore, ∆0(X)

is generated by the vertex, which we call x and ∆1(X) is generated by the edge, which we call e

(e 7→ 0). For n > 1, ∆n(X) = 0. Therefore, maps ∂ : ∆n(X)→ ∆n−1(X) can be defined.

With everything labeled in the diagram, we can calculate the simplicial homology groups:

H∆
0 =

ker ∂0

im ∂1
=

∆0(X)

{0}
≈ Z H∆

1 =
ker ∂1

im ∂2
=

∆1(X)

{0}
≈ Z.

0 ∆1(X) ∆0(X) 0

〈e〉 〈x〉

∂2

≈

∂1

≈

∂0=0

The first observation is that the zero homology group of circle is Z, which agrees with the result

that any path-connected space has H1 ≈ Z. Secondly, the result can be generalized to any Sn as

H∆
0 ≈ H∆

n ≈ Z, while other homology groups are trivial.

The construction of singular homology is similar to the simplicial homology. However, the free

abelian groups Cn(X) are generated by all singular n-simplicies in X. As a result, Cn(X) are

usually infinitely generated. Perhaps unsurprisingly, if X is a CW-complex, the singular homology

groups are isomorphic to simplicial homology groups.

One significance of homology and cohomology groups is that they are invariants under homotopy

equivalence. In other words, spaces that are homotopy equivalent have isomorphic homology and

cohomology groups. Therefore, to study different classes of topological spaces, one can instead

study the corresponding algebraic structures with more ease.

Theorem 1.9. A homotopy equivalence f : X → Y induces an isomorphism f∗ : Hn(X)→ Hn(Y ).

Proof. The result follows from the result that two homotopic maps induces the same homology

maps; i.e., if f ' g : X → Y , then f∗ = g∗ : Hn(X)→ Hn(Y ). Considering the maps

Hn(X)
f∗−→ Hn(Y )

g∗−→ Hn(X)
f∗−→ Hn(Y ),

we have that (gf)∗ = 1∗ and (fg)∗ = 1∗ since, by definition of homotopy equivalence, fg and gf are

homotopic to the identity maps on Y and X respectively. Having (gf)∗ = g∗f∗ = 1∗ implies that
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f∗ is injective, while (fg)∗ = f∗g∗ = 1∗ implies that f∗ is surjective, so in all, f∗ is an isomorphism.

(As a note, the statement and proof for cohomology is similar.) �

Next, cohomology is the “reverse” of homology as a way to associate a topological space with a

group structure. While in the simplicial homology, we denote the free abelian groups in the chain

complex as Cn(X) generated by n-cells, in simplicial cohomology, we denote the dual groups in

the cochain complex as Cn(X). As an example, when the dual group is with respect to Z, Cn(X)

equals to Hom(Cn(X),Z), which means homomorphisms from Cn(X) to Z. With well-defined

coboundaries δ, the cohomology groups can be denoted as Hn(X) = ker δ/ im δ.

One advantage of cohomology groups is that with its cup product, cohomology has a graded ring

structure attatched to it.

Definition 1.10. Given cochains φ ∈ Ck(X;R) and ψ ∈ C l(X;R), then we define the cup product

φ ^ ψ ∈ Ck+l(X;R) as

(φ ^ ψ)(σ) = φ(σ |[v0,...,vk]) · ψ(σ |[vk,...,vk+l]),

where σ is a singular simplex from ∆k+l to X.

With the definition of cup product, the map of cochains

Ck(X;R)× C l(X;R) Ck+l(X;R)^

has well-defined coboundary and cycle. Thus, it induces the map of cohomology groups

Hk(X;R)×H l(X;R) Hk+l(X;R)^

Although this induced map is only a function but not a ring homomorphism, with the definition of

tensor product and the Theorem 1.7, the induced map can be modified to a ring homomorphism

Hk(X;R)⊗H l(X;R) Hk+l(X;R).^

Given this cup product, we can define the zero-divisors cup length of H∗(X; k) to be the largest

i such that there exist α1, . . . , αi ∈ ker ^ such that α1 · · ·αi 6= 0 in H∗(X; k) ⊗ H∗(X; k). As a

note, since H∗(X;R) is a graded ring, it is the case that the tensor product H∗(X;R)⊗H∗(X;R)

is also a graded ring. In particular, the product in H∗(X;R)⊗H∗(X;R) is given by

(a⊗ b) · (c⊗ d) = (−1)|b||c|ac⊗ bd,

where |b| and |c| are the associated dimensions of b and r in H∗(X;R). As we will show in the

final section, this zero-divisors cup length provides a lower bound on the topological complexity of

a given space X.
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As one final tool in working with cohomology, we are aided by the following Künneth formula

which provides a way of computing the cohomology of product spaces with tensor products:

Theorem 1.11. If X and Y are finite cell complexes and k is a field, we have

H∗(X; k)⊗H∗(Y ; k) ≈ H∗(X × Y ; k).

In this situation, we can then express the cup product as the composition

H∗(X)⊗H∗(X) H∗(X ×X) H∗(X)≈ ∆∗

where ∆ : X → X ×X is given by x 7→ (x, x).

2. Defining Topological Complexity

Topological complexity is an important notion related to the motion-planning problem that en-

codes how many different “rules” can describe the motion in a space. With a topological space X,

motion planning involves taking a pair of configurations (A,B) ∈ X × X and producing a corre-

sponding path s(A,B) in the path space. The results of motion planning problems can be widely

used in robotic programming in complicated settings with potential obstacles. By understanding

the motion planning, the efficiency and accuracy of the programming can be practically improved.

Formally, the path space PX is defined as the collection of all the paths γ : [0, 1] → X. Then,

we define π : PX → X × X as the map from the path to its endpoints; i.e., π(γ) = (γ(0), γ(1)).

Therefore, to find a path from A to B, it’s equivalent to find the section of π, which we call

s : X ×X → PX that satisfies π ◦ s = 1X×X .

The idea of topological complexity restricts the sections to be continuous, which benefits robot

motion programmings to be accurate and effective. As a counterexample, if the section is not

continuous, the jump in the programming may cause some systematic error. Continuity of sections

can be naturally interpreted in metric spaces using the ε-δ definition as when the end points are

moved to a small distance around its neighborhood, the choice of path also changes slightly. Note

that the continuity can be rigorously defined using compact-open topology, which we will not discuss

here.

With the interpretation of continuity of sections, we can define the topological complexity.

Definition 2.1. The topological complexity of a configuration space X, denoted as TC(X), is the

minimal number of open sets U1, U2, ..., UTC(X) in an open cover of X × X such that each Ui is

paired with a continuous section si : Ui → PX.
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As implied by the statement of the definition, not every space has a single continuous section. In-

deed, one can observe that the existence of such continuous section on the entire space is equivalent

to the space being contractible.

Theorem 2.2. A continuous motion planning s : X ×X → PX exists if and only if the configu-

ration space X is contractible.

Proof. (⇒) Assume the existence of such continuous section, which we call s : X×X → PX. Then

fix an arbitrary point A0 ∈ X. Then, the homotopy ht from A0 to X can be explicitly defined as

ht(B) = s(A0, B)(t),

where B ∈ X. Note that for ht, ht(A) = A, h0(B) = A0, and h1(B) = B. Therefore, ht implies a

contraction of a space X into a point A0.

(⇐) Let’s call the homotopy as ht such that h0(A) = A, and h1(A) = A0, where A,A0 ∈ X.

Then, we try to construct a continuous section.

For any (A,B) ∈ X ×X, define the motion planning as the composition of the path ht(A) and

the inverse of ht(B) (we may reparametrize the path so that the motion planning is at constant

speed from t = 0 to t = 1). Here, such motion planning is continuous since it is inherited from the

continuous homotopy. Intuitively, the motion planning first moves A to the point of contraction

A0, and then moves to B. �

As a final elementary result in topological complexity, we can prove that the topological com-

plexity of a space X is an invariant quantity under homotopy equivalence.

Theorem 2.3. TC(X) is invariant under homotopy equivalence.

Proof. Suppose that there exist continuous maps f : X → Y and g : Y → X such that fg ' 1Y ,

the identity map on Y . Given that fg ' 1Y , let ht : Y → Y be a homotopy such that h0 = 1Y

and h1 = f ◦ g.

Here, we want to show that TC(Y ) ≤ TC(X). Let U ⊂ X × X be an open subset such that

there exists a continuous motion planning s : U → PX over U . Define V = (g × g)−1(U) ⊆ Y × Y

(where (g × g)−1(x1, x2) = (g−1(x1), g−1(x2)) for any (x1, x2) ∈ X × X). From this information,

we can explicitly construct a continuous motion planning σ : V → PY over V . For (y1, y2) ∈ V
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and t ∈ [0, 1], set

σ(y1, y2)(t) =


h3t(y1), for 0 ≤ t ≤ 1

3 ,

f(s(g(y1), g(y2))(3t− 1), for 1
3 ≤ t ≤

2
3 ,

h3(1−t)(y2), for 2
3 ≤ t ≤ 1.

This map σ first takes y1 ∈ Y to f(g(y1)) ∈ Y under the homotopy ht. Next, σ equals the image

under f of the path from g(y1) to g(y2) (as points in X) provided by the continuous section s.

Finally, σ takes f(g(y2)) back to y2 under the homotopy ht, now in reverse.

If TC(X) = k, then there exists a minimal open cover U1 ∪ . . . Uk = X × X with continuous

motion planning over each Ui. Applying the above construction, we then obtain an open cover

V1 ∪ · · · ∪ Vk of Y × Y with continuous motion planning over each Vi. Therefore, we have that

TC(Y ) ≤ TC(X).

If X and Y are homotopy equivalent, we have that there exist maps f : X → Y and g : Y → X

such that fg ' 1Y and gf ' 1X . By the above result, it follows that TC(Y ) ≤ TC(X) and

TC(X) ≤ TC(Y ), so TC(X) = TC(Y ), concluding the proof. �

3. Bounds on Topological Complexity

With these preliminary results of topological complexity established, we can introduce the follow-

ing bounds on the topological complexity of a space: a cohomological lower bound and a dimensional

upper bound.

3.1. A Lower Bound in Cohomology.

Theorem 3.1. If k is a field, then TC(X) is greater than the zero-divisors-cup-length of H∗(X; k).

Proof. Since k is a field, we have by Theorem 1.11 that H∗(X) ⊗H∗(X) ≈ H∗(X ×X), and the

cup product is given by the composition

H∗(X)⊗H∗(X) H∗(X ×X) H∗(X)≈ ∆∗

where ∆ : X → X ×X is given by x 7→ (x, x). Therefore, Z(X) ≈ ker(∆∗), so we can treat each

αi as an element βi ∈ ker(∆∗), and showing α1α2 · · ·αt = 0 in H∗(X) ⊗ H∗(X) is equivalent to

showing β1 ^ · · · ^ βt = 0 in H∗(X ×X). In other words, we want to show β1 ^ · · · ^ βt is in

the kernel of the iterated cup product

^: H∗(X ×X)⊗ · · · ⊗H∗(X ×X)→ H∗(X ×X).
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To do so, we can let a : X → PX be the map that sends x to the constant path at x. Note

that there exists a map b : PX → X that sends a path p in PX to p(0) ∈ X. Considering b

as the composition of the map π (as introduced in the previous section) with the projection map

P : X ×X → X defined by (x, y) 7→ x, we can note that b is indeed continuous as a composition

of continuous maps. Furthermore, we have that ba = 1X by definition, and we can note that

ab ' 1PX by considering the homotopy ft : PX → PX which takes any path p : [0, 1] → X to

the path p′ such that p′(s) = p(s) for all s ≤ t, and p′(s) = p(t) for all s > t. In particular, we

have that f0 = ab and f1 = 1PX . Therefore, a is indeed a homotopy equivalence, so the induced

homomorphism a∗ is an isomorphism and we have the following commutative diagrams:

X PX

X ×X

a

∆
π

H∗(X) H∗(PX)

H∗(X ×X)

a∗

∆∗
π∗

Since a∗ is an isomorphism, we have that ker(∆∗) = ker(π∗).

Let TC(X) = t, so there exist open sets U1, . . . , Ut which cover X ×X and continuous sections

si : Ui → PX. This gives the following commutative diagrams for each i (where ji and ki are

inclusions):

π−1(Ui) PX

Ui X ×X

ji

π πsi

ki

H∗(π−1(Ui)) H∗(PX)

H∗(Ui) H∗(X ×X)

s∗i

j∗i

π∗

k∗i

π∗

Here, we can note that π∗ is injective. To see this, note that πs = 1Ui , so

(πs)∗ = s∗π∗ = 1∗Ui
.

In particular, we have that if π∗(x) = π∗(y), then s∗π∗(x) = x = y = s∗π∗(y), so π∗ is indeed

injective. By the commutativity of the right diagram above, we then have that j∗i π
∗ = π∗k∗i . If

β ∈ ker(π∗), then we have that

0 = j∗i π
∗(β) = π∗k∗i (β).

Since π∗ is injective, we have that π∗k∗i (β) = 0 implies that k∗i (β) = 0, so β ∈ ker k∗i .

Next, for each i, we have a long exact sequence (as in Theorem 2.16 of Hatcher’s Algebraic

Topology)

· · · H∗(Ui) H∗(X ×X) H∗(X ×X,Ui) · · ·
k∗i q∗i
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with the same map k∗i as above. By the exactness of this sequence, we have that ker k∗i = im q∗i .

Since β ∈ ker(π∗), we have that β ∈ ker k∗i = im q∗i . By the definition of the image, this then

implies that there exists some β̃ ∈ H∗(X ×X,Ui) such that q∗i (β̃) = β.

Now, we have the following commutative diagram:

H∗(X ×X,U1)⊗ · · · ⊗H∗(X ×X,Ut) H∗(X ×X,U1 ∪ · · · ∪ Ut)

H∗(X ×X)⊗ · · · ⊗H∗(X ×X) H∗(X ×X)

^

q∗1⊗···⊗q∗t q∗

^

As in the definition of topological complexity, we have that

X ×X = U1 ∪ · · · ∪ Ut,

so we have that

H∗(X ×X,U1 ∪ · · · ∪ Ut) = H∗(X ×X,X ×X) = 0.

Now, consider β1 ⊗ · · · ⊗ βt ∈ H∗(X × X) ⊗ · · · ⊗ H∗(X × X). We can note from the previous

paragraph that

(q∗1 ⊗ · · · ⊗ q∗t )(β̃1 ⊗ · · · ⊗ β̃t) = β1 ⊗ · · · ⊗ βt

for some β̃1 ⊗ · · · ⊗ β̃t ∈ H∗(X ×X,U1) ⊗ · · · ⊗H∗(X ×X,Ut). In particular, we now have that

the cup product

^: H∗(X ×X,U1)⊗ · · · ⊗H∗(X ×X,Ut)→ H∗(X ×X,U1 ∪ · · · ∪ Ut) = 0

sends every element of H∗(X ×X,U1)⊗ · · · ⊗H∗(X ×X,Ut) to 0. Therefore, we have that

q∗◦^ (β̃1 ⊗ · · · ⊗ β̃t) = 0

for all β̃1 ⊗ · · · ⊗ β̃t ∈ H∗(X ×X,U1)⊗ · · · ⊗H∗(X ×X,Ut). By the commutativity of the above

diagram, we have that ^ ◦(q∗1 ⊗ · · · ⊗ q∗t ) = q∗◦ ^: H∗(X × X,U1) ⊗ · · · ⊗ H∗(X × X,Ut) →

H∗(X ×X). Therefore, we have that

0 =^ ◦(q∗1 ⊗ · · · ⊗ q∗t )(β̃1 ⊗ · · · ⊗ β̃t) =^ (β1 ⊗ · · · ⊗ βt),

so β1 ⊗ · · · ⊗ βt ∈ ker ^.

We now have that β1 ^ · · ·^ βt = 0 in H∗(X ×X), so equivalently, we have that α1 · · ·αt = 0.

Therefore, we have that the zero-divisors-cup-length of H∗(X; k) is less than t, the topological

complexity of X, concluding the proof. �
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3.2. Topological Complexity of Spheres. As an sample application of this cohomological lower

bound, we can consider the topological complexity of spheres Sn. We have that the cohomology

groups of the sphere are

Hk(Sn;Q) =

Q if k = 0, n

0 otherwise.

Let u be the generator for Hn(Sn;Q) and let 1 be the generator of H0(Sn;Q). If we let a =

1⊗ u− u⊗ 1 ∈ H∗(Sn;Q)⊗H∗(Sn;Q), we can note that ^ (a) = 1 · u− u · 1 = 0, so a ∈ ker ^.

Next, we can note that

(u⊗ 1− 1⊗ u)(u⊗ 1− 1⊗ u) = (−1)0·n(u ^ u⊗ 1 ^ 1)

− (−1)0(u ^ 1⊗ 1 ^ u)

− (−1)n
2
(1 ^ u⊗ u ^ 1)

+ (−1)0(1 ^ 1⊗ u ^ u)

= −(u ^ 1⊗ 1 ^ u)− (−1)n
2
(1 ^ u⊗ u ^ 1)

= −(u ^ 1⊗ 1 ^ u)(1 + (−1)n
2
)

=

−2(u⊗ u) if n is even

0 if n is odd
.

Therefore, we have that the zero-divisors cup length of H∗(Sn;Q) is at least one if n is odd and at

least two if n is even. Applying the previous theorem, we then have that

TC(Sn) ≥

2 if n is even

3 if n is odd
.

From here, we can exhibit explicit motion planning rules to show equality, that is,

TC(Sn) =

2 if n is even

3 if n is odd
.

First, let U1 = {(x, y) | x 6= −y} ⊂ Sn × Sn and define a continuous section s1 : U1 → PSn which

maps (x, y) to the shortest path from x to y.

Next, if n is odd, then by the Hairy Ball Theorem, there exists a nonzero tangent vector field on

Sn. Take U2 = {(x, y) | x 6= y} ⊂ Sn × Sn, and define a continuous section s2 : U2 → PSn which

sends takes the point x to −x along the arc in the direction of the tangent vector field, and then
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takes the shortest path from −x to y. We now have that TC(Sn) ≤ 2 when n is odd, so together

with our cohomological lower bound, we have that TC(Sn) = 2 when n is odd.

If n is even, then we no longer have a nonzero tangent vector field on Sn, but we do have tangent

vector fields which are nonzero except at one point, say, x0 ∈ Sn. Define U ′2 = {(x, y) | x 6= y, x 6=

x0}, and similarly define a continuous section s′2 : U ′2 → PSn which sends takes the point x to −x

along the arc in the direction of the tangent vector field, and then takes the shortest path from −x

to y.

Similarly, we have a tangent vector fields which are nonzero except at one point −x0 ∈ Sn.

Define U ′3 = {(x, y) | x 6= y, x 6= −x0}, and define a continuous section s′3 : U ′3 → PSn which sends

takes the point x to −x along the arc in the direction of the tangent vector field, and then takes

the shortest path from −x to y. We now have that TC(Sn) ≤ 3 when n is even, so together with

our cohomological lower bound, we have that TC(Sn) = 3 when n is even, as desired.

3.3. An Upper Bound in Dimension. To conclude, we will provide an upper bound of the

topological complexity of a CW-complex X based on its dimension. In doing so, we are aided by

the following lemma:

Lemma 3.2. Given maps f : A → Y and g : B → Y , if A ∩ B = A ∩ B = ∅, then the function

h : A ∪B → Y defined by

h(x) =

f(x) if x ∈ A

g(x) if x ∈ B

is continuous.

Proof. Let U be an open set in Y . Here, we want to show that h−1(U) = f−1(U)∪ g−1(U) is open

in A ∪B.

First of all, we can note that f−1(U) is open in the subspace topology of A since f is a continuous

map. Therefore, there exists an open set V of A∪B such that f−1(U) = A∩V . Here, we can note

that since the closure B is closed in A ∪B, it follows that the complement (B)c is open in A ∪B.

Furthermore, we have that A ∩ B is empty, so we have that A = (B)c is an open set in A ∪ B.

Therefore, as the intersection of two open sets in A ∪B, we have that f−1(U) = A ∩ V is itself an

open set in A ∪B.

A similar argument provides that g−1(U) is also an open set in A∪B, so we have that h−1(U) =

f−1(U) ∪ g−1(U) is open in A ∪B. Therefore, h : A ∪B → Y is indeed continuous. �

Theorem 3.3. If X is a connected CW complex of dimension n, then TC(X) ≤ 2n+ 1.
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Proof. For i = 0, 1, . . . , n, let Ai = Xi −Xi−1, so that Ai is the disjoint union of the open i-cells of

X. Then, for i = 0, 1, . . . , 2n, define Gi ⊂ X ×X by

Gi =
⋃

r+s=i

Ar ×As.

Suppose er and es are open r-and s-cells of X (so that er and es are homeomorphic to open discs

of dimensions r and s), with r + s = i (so that er × es ⊂ Gi). Fix points x0 ∈ er and y0 ∈ es,

and also fix some path γ (in X) from x0 to y0. Then, given any point (x, y) ∈ er × es, let si(x, y)

be the path which takes the shortest path from x to x0 (taken at constant speed), followed by

γ, followed by the shortest path from y0 to y (also at constant speed). This defines a continuous

section si on es × er (which is continuous since the shortest paths from x to x0 and from y0 to y

vary continuously with x and y).

From here, we can note that each each Gi is a union of such products of cells er × es satisfying

r + s = i. We can apply the previous lemma to extend the continuous sections on each er × es to

one continuous section on Gi. To do so, it suffices to prove that

er × es ∩ ep × eq = ∅,

whenever r + s = p+ q = i.

Suppose that er ∩ ep 6= ∅. In this case, if p = r, then it follows that er = ep. This also implies

that s = q, but by our setup, es and eq must be different open cells of X, which implies an empty

intersection es ∩ eq and hence an empty intersection er × es ∩ ep × eq. Next, when r 6= p, with the

loss of generality, we assume r > p. Then, it follows that s < q, which in turn implies es ∩ eq = ∅

(by considering the CW-complex structure). Thus, the intersection er × es ∩ ep× eq must again be

empty.

Repeatedly applying Lemma 3.2 then provides a continuous section defined on each of the 2n+1

sets Gi, and since

X ×X =
⋃
i

Gi,

we have that TC(X) ≤ 2n+ 1 (as the minimal number of such subsets), concluding the proof. �

References

[1] Farber, Michael. Invitation to Topological Robotics. (Zurich Lectures in Advanced Mathematics. European Math-

ematical Society, 2008).

[2] Farber, Michael. Topological Complexity of Motion Planning. Discrete Comput Geom 29, 211–221 (2003).

https://doi.org/10.1007/s00454-002-0760-9

[3] Hatcher, Allen. (American Mathematical Society Chelsea Publishing, 1976).


