
Rings of Algebraic Integers as Dedekind
Domains

An Introduction

Horace Fusco, Shuhang Xue (Phone 507-581-6970)

Dr. Mark Krusemeyer
Carleton College
October 16, 2022



Contents
1 Preliminaries 1

1.1 Norm and Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Algebraic Number Fields and Rings of Algebraic Integers . . . . . . . . . . . 2

2 Existence of factorizations into prime ideals 6
2.1 Failure of unique prime factorizations in D . . . . . . . . . . . . . . . . . . . 6
2.2 Ideal Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Finite class number of F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Factoring Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Uniqueness of Factorization into Prime Ideals 11

1 Preliminaries

1.1 Norm and Trace
Begin our discussion of the norm of a field extension.

Let Q ⊆ F ⊆ C be a field extension where F is an algebraic number field. Suppose
α1, ..., αn is a basis for F over Q. Now take some element α ∈ F . We can multiply α by each
of the basis vectors, and then expand in terms of our basis to get ααi = ∑

1≤j≤n qijαj for
some scalars qij ∈ Q. For our given element α ∈ F , these scalars form a matrix

Aα =


q11 . . . q1n
... . . . ...

qn1 . . . qnn


This matrix is a function of α, and we can use it to define some useful functions of α.

Definition 1.1. For the field extension described above, the norm of an element α ∈ F , we
define NF |Q(α) as det(Aα); and we define tF |Q(α) as the trace of Aα.

To see that this function is well defined, we need to mention that we are only using the
vector space properties of the field extension, and in general the determinant and trace of a
matrix are independent of the choice of basis from linear algebra. We should now mention a
few other important insights from linear algebra that will be useful later.

Definition 1.2. Continuing to use n for the degree of Q ⊆ F , for a general n-tuple of
elements in F , α1, ..., αn, we define the discriminant ∆(α1, ..., αn) by forming a matrix out of
tF |Q(αiαj) for each product αiαj, call it A, and setting ∆(α1, ..., αn) = det(A).

Remark 1.3. Here, we note that for a splitting field, this general definition agrees with
the in-class definition of the norm and trace. However, for non-splitting field (not enough
automorphism), they are not equal. One can easily see through the counterexample Q( 3

√
2).
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Proposition 1.4. Suppose α1, ..., αn and β1, ..., βn are bases for F ⊃ Q. Let αi = ∑
j aijβj.

Then, ∆(α1, ..., αn) = det(aij)2∆(β1, ..., βn).

Proof. We first express a product of two basis vectors αiαk using a double sum for the product
of their expansions in the β-basis:

αiαk =
∑

j

∑
l

aijaklβjβl

.
We can take the trace of both sides of this identity when we compute the product for

every pair of basis vectors, and form the following matrices

A = (tF |Q(αiαj))

B = (tF |Q(βjβl))

C = (aij)

We can use the symmetry of the double sum expression above to find A = CT BC. It is
known from linear algebra that det(C) = det(CT ), so we now have det(A) = det(C)2 det(B).
If we apply our definition of discriminant, this expression becomes exactly the desired result.

1.2 Algebraic Number Fields and Rings of Algebraic Integers
Definition 1.5. For a field extension Q ⊆ F ⊆ C, we say F is an algebraic number field if
|F : C| is finite.

Definition 1.6. We say an element, c ∈ C is an algebraic integer if c is integral over the
ring Z, which is to say if c is the root of monic polynomial with integer coefficients.

It happens that the algebraic integers in the complex numbers form a ring. To see the
algebraic numbers (roots of polynomials with integer coefficients that aren’t necessarily monic)
form a ring, we can use the tower law, and the proof that the algebraic integers form a ring
is similar, but in the interest of space we will state this as a proposition without proof.

Proposition 1.7. The set of algebraic integers, Ω ⊆ C is a ring. Furthermore for an
extension Q ⊆ F ⊆ C, the algebraic integers contained in F , denoted D := F ∩ Ω is a ring.
We call this ring the ring of integers over the algebraic number field F .

Here, we will have two quick examples on what rings of integers may look like.
Example 1.8.

(i) Z the integer ring is a ring of integers. We trivially observe Q ∩ Ω = Z; in other words,
the elements of Q with integer coefficient minimal polynomial over Q are exactly integers.
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(ii) The Gaussian integers Z[i] is a ring of integers. First, since i has minimal polynomial
x2 + 1, we note that Z[i] is a subring of the ring of integer of Q(i).

Conversely, we let α = a + bi be an element of Q(i) with b ̸= 0. We note that it has
minimal polynomial x2 − 2ax + b2 + a2. Here, to make sure that the minimal polynomial
x2 − 2ax + b2 + a2 has integer coefficients, at the first sight, it seems that we can let a be a
multiple of 1/2.

However, if a is indeed of fraction expression (a = k/2 with k odd), then b2 + a2 will
never be integers. Indeed, we have a2 = k2/4 with nominator equal to 1 mod 4. Then, b2 in
the cleanest form must have a denominator 4, and a nominator equal to 3 mod 4, which is
impossible since 12 ≡ 1 mod 4, 22 ≡ 0 mod 4, 32 ≡ 1 mod 4, and 02 ≡ 0 mod 4.

Then, a has to be integer and b has to be integer as well, which completes the proof that
Z[i] is the ring of integers of Q(i).

In the above two examples, we notice that rings of integers are both finitely generated as
a Z−module. Indeed, this observation is true in general. We proceed to prove this fact with
the following lemma.

Lemma 1.9. For β ∈ F , there is some integer b ∈ Z such that bβ ∈ D

Proof. Because the degree |F : Q| is finite, we know that β satisfies some minimal polynomial
p(X) ∈ Q[X], where we can multiply through by the product of the denominators of its
coefficients to find a polynomial in Z[X] which still has β as a root. Thus we may assume
p(X) = anxn +an−1X

n−1 + ...+a0 ∈ Z[X], with anβn +an−1β
n−1 + ...+a0 = 0. The algebraic

integers are roots of monic polynomials in Z[X], so we can multiply this latter expression by
an−1

n to find (anβ)n + an−1(an−1
n β)n−1 + ... + a0a

n−1
n = 0, and thus that anβ is a root of the

monic polynomial q(X) = Xn + an−1X
n−1 + an−2anXn−2 + ... + a0a

n−1
n ∈ Z[X] and therefore

we have our b := an ∈ Z such that bβ ∈ D.

Proposition 1.10. Given an ideal A ⊆ D, there is a basis for F ⊇ Q contained in A.

Proof. First we take a general basis α1, .., αn for F over Q. Then we observe that for each
element αi, by Lemma 1.9 we have an integer bi such that βibi ∈ D. So let b := ∏

bi making
bα1, ..., bαn ∈ D, and take some element α ̸= 0 ∈ A, this gives a new set αbα1, ..., αbαn ∈ A
which must also be a basis for F over Q, since we have only multiplied the original basis by
the nonzero scalar αb.

Proposition 1.11. For an ideal A ⊆ D where α1, ..., αn ∈ A is a basis for F ⊇ Q such
that |∆(α1, ..., αn)| is minimal. Then A = α1Z + ... + αnZ. In other words, A is a finitely
generated Z−module.

Proof. First, we posit that the absolute value of the discriminant of a basis in A is a non-
negative integer (which is believable, but which we won’t prove here), so we may choose a
specific set of basis elements so that the discriminant is minimal. Specifically, we call this set
of basis element {α1, ..., αn} ⊂ A with the minimal discriminant.

Next, we let α ∈ A and write α with respect to the basis of our choice; i.e.,

α =
n∑

i=1
γiαi, where γi ∈ Q.
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Then, notice that we need to show that each γi ∈ Z. Towards a contradiction, suppose not so
that there exists γi /∈ Z. Without loss of the generality, we may assume that γ1 ∈ Q − Z.

Then, we may truncate the integer part of γ1 to write γ1 = m + θ, where m ∈ Z and
0 < θ < 1. With m, we may create another basis in A of F over Q, namely β1 = α−mα1, β2 =
α2, ..., βn = αn. We claim that β1, ..., βn is a basis of F over Q. Indeed, the linear independence
of β2, ..., βn is clear by assumption. To see that β1 is linearly independent from other β′

is, we
suppose not so that there exists ci ∈ F not all nontrivial so that

c1(α − mα1) + c2α2 + ... + cnαn = 0.

Then, we can distribute α into its linear combination of αi to obtain the contradiction
that α1, ..., αn are linearly dependent. Thus, the claim is proved with the straightforward
observation that β1 = α − mα1 ∈ A.

Furthermore, we need to find the matrix of change of basis, namely {aij} mentioned in
Proposition 1.4. Indeed, we note that β1 = θα1 + γ1α2 + ... + γnαn so that the first row is
(θ γ1 γ2 ... γn). For any other βi = αi, the i − th has 1 at the i − th column and 0 anywhere
else. Thus, we notice that the determinate of this upper-diagonal matrix {aij} is exactly θ.

Finally, we apply Proposition 1.4 to notice that ∆(β1, ..., βn) = θ2∆(α1, ..., αn) <
∆(α1, ..., αn), since 0 < θ < 1, which is the desired contradiction with the choice of α1, ..., αn

minimizing the discriminant.

With the above proposition, we know that all rings of integers are finitely generated
Z−module. However, we don’t know the number of generators and what those generators
look like. In the next example, we see that the rings of integers of Q(

√
5) and Q(

√
−5) have

completely different forms.
Example 1.12. Further examples of rings of integers.

(i) For F = Q(
√

5), D = Z[1+
√

5
2 ].

Proof. We first note that 1+
√

5
2 ∈ Ω ∩ F since x2 − x − 1 is its minimal polynomial.

Conversely, we see that since {1,
√

5} is a basis of F over Q, we write an arbitrary element
of F as α = a + b

√
5, with b ̸= 0. Then, α has minimal polynomial x2 − 2ax + (a2 − 5b2).

Notice that first for −2a ∈ Z, we let a be an integral multiple of 1/2. Then, it follows that
any b as an integral multiple of 1/2 will always make sure a2 − 5b2 ∈ Z by looking at the
nominator mod 4 similar to the proof of Z[i] is a ring of integer. Thus, we conclude that
D = Z[1+

√
5

2 ].

(ii) For F = Q(
√

−5), D = Z[
√

−5].

Proof. We note that similarly, the containment of Z[
√

−5] ⊂ D is trivial. Conversely, for any
element of F as α = a + b

√
−5, with b ̸= 0, it has minimal polynomial x2 − 2ax + a2 + 5b2.

Note that if a = k/2, where k is some odd integer, we have 5b2 ≡ 1 mod 4, which implies
that the term a2 + 5b2 is never in Z. Therefore, it has to be the case that a ∈ Z and
correspondingly b ∈ Z. Thus, we conclude that D = Z[

√
−5].

Proposition 1.13. If A ⊆ D is an ideal then A ∩ Z is nonempty.
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Proof. If we take some α ̸= 0 ∈ A ⊂ D, α is an algebraic integer and therefore must
satisfy some monic polynomial over Z, in other words there exist an−1, ..., a0 ∈ Z such that
αn + an−1α

n−1 + ... + a0 = 0 ∈ A. Then, since we are in a field, we may multiply a−1 to both
sides of the above equation so that without loss of generality, we may assume a0 ̸= 0. Notice
now we may move a0 to the other side to see that a0 ∈ A ∩ Z.

Proposition 1.14. Show if A is a ideal of D, then D/A is finite.

Proof. To show D/A is finite, we instead look at a principle ideal ⟨a⟩ ⊂ A, where a ∈ A ∩ Z,
obtained from Proposition 1.13. We notice that there is a canonical surjective homomorphism
from D/⟨a⟩ → D/A. Thus, it suffices to show D/⟨a⟩ is finite.

First, we appeal to Proposition 1.11 to write down D = α1Z + α2Z + ... + αnZ, where
αi ∈ D. Let an arbitrary element ω ∈ D. Note since α1, ..., αn is also a basis of F over Q,
we can write ω = ∑

miαi, where mi ∈ Z. Then, we note that for each mi, we may consider
mi modulo a with remainder as an integer; i.e., write mi = nia + qi, where 0 ≤ qi < a is an
integer (this is the division with remainder in the ring of integers).

Then, we notice that in D/⟨a⟩,

ω =
∑

miαi =
∑

qiαi + ⟨a⟩.

So far, it is already clear that for each coset in D/⟨a⟩, there is an element of {∑
qiαi | 0 ≤

qi < a, qi ∈ Z} inside. We further claim that in each coset, there is exactly one element from
{∑

qiαi | 0 ≤ qi < a, qi ∈ Z}. In other words, {∑
qiαi | 0 ≤ qi < a, qi ∈ Z} is the set of

representatives for cosets in D/⟨a⟩.
Note that if ∑

qiαi and ∑
q′

iαi are in the same coset, by definition, we have ∑(qi − q′
i)αi =

aβ for ∃β ∈ D. Then, we note that since α′
is are linearly independent, qi − q′

i must be
divisible by a. Recall here that 0 ≤ qi, q′

i < a so that it must be qi = q′
i, which completes the

proof of the claim.
In conclusion, we know that the set of representatives of coset of {∑

qiαi | 0 ≤ qi < a, qi ∈
Z} has finite cardinality an, which implies that D/A is finite.

Definition 1.15. We say a ring is Noetherian if every ascending chain of ideals A1 ⊆ A2 ⊆
A3 ⊆ ... has some natural number N ∈ N such that An = An+1 for all n ≥ N .

Lemma 1.16. The ring of integers D ⊆ F of an algebraic number field is a Noetherian ring.

Proof. This follows directly from the fact that D/A is finite. Indeed, by the one-to-one
correspondence between ideals containing A and ideals of D/A, we note that there are finitely
many ideals containing A.

Lemma 1.17. Every prime ideal of D is maximal.

Proof. Take some prime ideal P ⊆ D. We have by Lemma 1.14 that D/P is finite, making it
a finite integral domain. For any element a ̸= 0 in a finite integral domain, by the pigeonhole
principle the sequence 1, a, a2, a3, ... must eventually repeat a value, so there exist n < m ∈ N
such that an = am, but since we have cancellation in an integral domain, it must be that
1 = am−n where m−n ≥ 2, but this means that a has the inverse am−n−1, so all finite integral
domains are fields, thus D/P is a field and therefore P is maximal in D.
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Note here that using Kummer’s theorem on commutative algebra, which states that a
noetherian normal domain with all prime ideals being maximal is Dedekind, we can directly
conclude that rings of integers has unique prime ideal factorization. However, the fact of
rings of integers are normal (integrally closed) is nontrivial. Instead, we directly show the
existence and uniqueness of factorization into prime ideals by studying the class number.

2 Existence of factorizations into prime ideals

2.1 Failure of unique prime factorizations in D

In this subsection, we show the failure of prime factorization in the ring of integers Z[
√

−5]
(checked in Example 1.12). But first, we generalize our context to rings of form Q[

√
d] with

d ∈ Z square free. Then, utilizing the norm, we prove a few lemmas to understand the units
and irreducible elements in those rings.

Lemma 2.1. For x ∈ Z[
√

d] where d is a square-free integer, N(x) = ±1 if and only if x is
a unit.

Proof. If x is a unit, then there exists some y ∈ Z[
√

d] such that xy = 1, then N(x)N(y) =
N(xy) = N(1) = 1. Since N(x), N(y) are both integers, the only possibility are N(x) = ±1.

On the other hand, for x = s + t
√

d ∈ Z[
√

d], if N(x) = ±1, by definition of the norm
function, (s + t

√
d)(s − t

√
d) = N(x) = ±1. Therefore, we have x · x̄ = 1, where x̄ = s − t

√
d.

Thus, we proved that x is a unit.

Lemma 2.2. If d < −1, then Z[
√

d] only has units ±1.

Proof. When d < −1, it suffices to solve s2 + lt2 = ±1, where l = |d| > 0. Note that the since
the left hand side is positive, the right hand side can never equal to −1. Thus, by solving
s2 + lt2 = 1, we deduce that u = ±1.

Lemma 2.3. 1 +
√

−5 and 1 −
√

−5 are irreducible in Z[
√

−5].

Proof. The proof for 1 +
√

−5 is almost the same to the proof for 1 −
√

−5. Here, we only
prove 1 +

√
−5 is irreducible.

Let a, b ∈ Z[
√

−5] such that ab = 1+
√

−5. Then, N(1+
√

−5) = 6 = N(ab) = N(a)N(b).
Notice N(a) may only be 1, 2, 3 or 6 since the norm in Z[

√
−5] is positive in general. However,

N(a) ̸= 2 or 3 because the corresponding Diophantine equation s2 + 5t2 = 2, or 3 has no
integer solutions. Then, either N(a) = 1, which implies that a is a unit, or N(a) = 6, which
implies that b is a unit.

Proposition 2.4. The domain Z[
√

−5] is not a unique factorization domain (UFD).

Proof. In domain Z[
√

−5], we observe that the element 6 has two factorizations:

6 = 2 · 3, 6 = (1 +
√

−5)(1 −
√

−5).

As we proved in the last lemma, 1+
√

−5 and 1−
√

−5 are both irreducible elements in Z[
√

−5].
Similarly, we can show that 2 and 3 are irreducible. As an instance, let a, b ∈ Z[

√
−5] such
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that 2 = ab. Then, N(2) = 4 = N(ab) = N(a)N(b). Notice N(a) may only be 1,2, or 4 since
the norm in Z[

√
−5] is positive in general. However, N(a) ̸= 2 because the corresponding

Diophantine equation s2 + 5t2 = 2 has no integer solutions. Then, either N(a) = 1, which
implies that a is a unit, or N(a) = 4, which implies that b is a unit.

Similarly, we use the same steps to show that 3 is also irreducible in Z[
√

−5]. Finally,
recall that the only units in Z[

√
−5] are ±1. By taking the products with units, it’s clear

that 2, 3, 1 +
√

−5, and 1 −
√

−5 are not each others’ associates.
Hence, Z[

√
−5] is not a unique factorization domain (UFD).

2.2 Ideal Multiplication
Instead of looking at the prime factorization of elements, we look at the prime ideal factoriza-
tion of ideals. In this subsection, we first aim to understand how to multiply ideals together,
and deduce some important properties of ideal multiplication in rings of integers.

Definition 2.5. The product IJ of ideals I and J is defined to be the set of all sums of
elements of the form ab, with a ∈ I and b ∈ J ; that is,

IJ = {a1b1 + a2b2 + ... + anbn|n ≥ 1, ak ∈ I, bk ∈ J}.

Followed from the definition, it’s easy to check that the product IJ is an ideal since it’s
closed under subtraction and multiplication from the domain. To proceed with our program,
we must state the following unobjectionable fact, whose proof would take us slightly beyond
the scope of our project. We will then prove a lemma which will will aid our understanding
of how ideal multiplication works in the ring D.
Note 2.6. For an ideal A ⊆ D and an element β ∈ F , if βA ⊆ A then β ∈ D.

Lemma 2.7. For ideals A, B ⊆ D such that A = AB, we have B = D.

Proof. We can appeal to Proposition 1.11 to say that A consists of integral linear combinations
of some set of elements α1, ..., αn ∈ A. Since A = AB, we can find elements bj ∈ B such that
αi = ∑

j bijαj. We can from the matrix B = (bij − δij) where δij = 1 if i = j and δij = 0
otherwise. The sums above become the matrix expression

B


α1
α2
...

αn

 = 0

in other words det(B) = 0, and if we write out the algebra of this expression, we find the
sum of 1 and many elements in B is zero, so 1 ∈ B and therefore B = D.

Corollary 2.8. For ideals A, B ⊆ D and some ω ∈ D that satisfies ⟨ω⟩A = BA, then
⟨ω⟩ = B.
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Proof. Since ⟨ω⟩A = BA, if we take β ∈ B and α ∈ A, then we have some a ∈ A with
βα = ωa, in which case β

ω
α = a ∈ A, so β

ω
A ⊂ A, and by the note above, this means β

ω
∈ D.

Consequentially, B ⊂ ⟨ω⟩ which means 1
ω

B is an ideal in D. Now manipulating the given
expression we have A = 1

ω
BA, so by Lemma 2.7 we know 1

ω
B = D and subsequently B = ⟨ω⟩.

We will now define an equivalence relation on the set of ideals in the ring of integers in
an algebraic number field.
Note 2.9. For two ideals A and B in the ring of integers D of an algebraic number field,
the relation A ∼ B where A and B are related if there exists two nonzero α, β ∈ D with
< α > A =< β > B, is an equivalence relation.

Definition 2.10. The equivalence classes of the relation ∼ are called ideal classes, and the
number of ideal classes is called the class number of F and is denoted hF .

2.3 Finite class number of F
Before proving the following lemma, we first note the this is a generalization of a Euclidean
function. Recall that a Euclidean function f on an integral domain R satisfies that for any
element a, b ̸= 0 ∈ R, there must exist q, r ∈ R such that a = bq + r with f(a − bq) > f(r).

In our case, the generalization is weak in the sense that instead of requiring using a itself,
we may use a scalar multiple (up to some scale dependent on F ) of a. In the proof of the
following lemma, since the norm we defined earlier is an n-dimensional notion, we exploit the
distance in n-space, where n is the degree of F over Q.

Lemma 2.11. For some algebraic number field F , there is a positive integer M ⊆ Z with
the following property. For α, β ∈ D with β ̸= 0, there is some integer 1 ≤ t ≤ M and an
element ω ∈ D such that |N(tα − ωβ)| < |N(β)|

Proof. We first use the multiplicative property derived by viewing N as a homomorphism
between multiplicative groups. Then, to prove the desired result, we can name γ = αβ−1 so
that it suffices to show |N(tγ − ω)| < 1 under the desired condition. A warning here is that
γ may not necessarily in D since β−1 may not necessarily in D. Thus, in the following, we
assume γ to be an arbitrary element of F .

We start by writing D as a finitely generated Z−module; i.e., D = α1Z + ... + αnZ (from
Proposition 1.11). Then, we first try to find a universal bound on |N(γ)| for γ ∈ F . Note
that we can write γ = ∑

γiαi in term of the basis with γi ∈ Q so that we have the following
bounds:

|N(γ)| =
∣∣∣∣∏

i

(
∑

i

γiα
(j)
i )

∣∣∣∣ ≤ C(max
i

γi)n, (1)

where C = ∏
j(

∑
i |α(j)

i |) by triangle inequality. To our convenience, we choose integer
m > n

√
C and let M = mn.

Then, we split γ into integer parts and fractional parts. Particularly, we may write
γi = ai + bi, where ai ∈ Z, 0 ≤ bi < 1. Thus, by defining

[γ] =
∑

i

aiαi, {γ} =
∑

i

biαi,
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we obtain γ = [γ] + {γ}, where [γ] ∈ D and {γ} has rational coefficients between 0 and 1.
Here, we formalize the geometric intuition we discussed before. Define the coordinate

map ϕ : F → Rn such that ϕ(γ) = (γ1, γ2, ..., γ3). Then, we note that by construction, ϕ({γ})
is mapped inside the unit n−cube. We partition the unit n−cube into mn sub-n-cubes with
length 1/m on each side (easily verify that the volume is preserved so that the partition is
well-defined). Then, we have for each 1 ≤ k ≤ mn + 1, we have a corresponding point ϕ({kγ})
inside the unit n-cube by construction (when k = mn + 1, it is still inside the unit cube since
m is chosen to be an integer). Next, by the pigeon-hole principle, we note that there are
at least two points lie in the same sub-n-cube (including the boundary). Let’s denote the
corresponding elements in F as hγ and lγ. Without loss of generality, we may assume that
h > l. Let t = h − l ≤ mn and observe

tγ = hγ − lγ = ω + δ,

where ω ∈ D and δ must has absolute value less than or equal to 1/m since two points are
assumed to be in the same sub-n-cube.

Finally, we check that the with the above choice of ω and δ, we must have the desired

|N(tγ − ω)| = |N(δ)| ≤ C(1/m)n = C/mn < 1.

Theorem 2.12. The class number of an algebraic number field F is finite.

Proof. Let A be an ideal in D. Then, since for nonzero element of A, the norm is a positive
integer, we may take β ̸= 0 ∈ A such that |N(β)| is minimal.

Then, by Proposition 2.11, we note that for any α ∈ A, we have 1 ≤ t ≤ M such that
|N(tα − ωβ)| < |N(β)|. Therefore, it has to be the case that tα − ωβ = 0 (intuitively
when β has minimal functional value, it "divides" any element). Then, we note that for any
1 ≤ t ≤ M , we have tα ∈ ⟨β⟩, which implies M !α ∈ ⟨β⟩.

Next, we try to find all equivalent ideals to A by looking at the equivalent ideals containing
the "smallest" element. Define B = ⟨β−1⟩M !A ⊂ D and note that ⟨β⟩B = M !A. Notice that
by choice, β ∈ A so that M !β ∈ ⟨β⟩B, which implies that M ! ∈ B so that ⟨M !⟩ ⊂ B. We
recall that D is noetherian so that there are only finitely many ideals containing ⟨M !⟩, which
implies that there are only finitely many candidates for B ∼ A. Finally, because ∼ is an
equivalent relation on the set of ideals of D, we note that the finiteness of B implies that the
class number hF is finite.

2.4 Factoring Ideals
After proving the class number hF of an algebraic number field F is finite, we can immediate
exploit the "finiteness" of ideals, just like how one proves a finite integral domain is a field,
a finite field has the Frobenius automorphism, and so on. In our case, we prove that every
ideal raised to a power is principal.

Proposition 2.13. For any ideal A ⊂ D, there is an integer k, 1 ≤ k ≤ hF , such that Ak is
principal.
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Proof. First, we let A ⊂ D be an arbitrary ideal. Consider the set {Ai | 1 ≤ i ≤ hF + 1} and
note that there are at least two ideals in this set that are equivalent.

Then, without loss of generality, let’s say that Am is equivalent to An with 1 ≤ n < m ≤ hF .
By definition, there exists α, β ∈ D such that

⟨α⟩An = ⟨β⟩Am.

We let B = Am−n := Ak (k = m − n) and claim that B is a principal ideal. First,
we note the equality ⟨α⟩An = ⟨β⟩BAn. Then, we may move β to the other side so that
⟨αβ−1⟩An ⊂ BAn. Note that then ⟨αβ−1⟩An ⊂ An so we can conclude αβ−1 ∈ D by definition
of an ideal.

Here, we obtain the crucial equality of ideals:

⟨αβ−1⟩An = BAn.

By Corollary 2.8, we finally conclude B = ⟨αβ−1⟩ as desired.

Remark 2.14. Indeed, the set of ideal classes form a group with ideal multiplication. Then,
the above Proposition implies that every class of ideal Ā has inverse Āk−1 because the product
of those is the trivial ideal class (principle ideals).

With the machinery we have built so far, we are ready to prove the generalized version of
Corollary 2.8, which serves as a crucial stepping stone for giving the factorization of ideals
into prime ones.

Proposition 2.15. If A, B, C are ideals, and AB = AC, then B = C.

Proof. Given ideals A, B, C of D and assume AB = AC. Then, we first recall from the last
proposition that there exists 1 ≤ k ≤ hF such that Ak is principle. Thus, we multiply Ak−1

to the left on both sides of the equation to obtain

⟨ω⟩B = ⟨ω⟩C.

Here, we note that for any b ∈ B, ωb ∈ ⟨ω⟩C. Thus, there exists c ∈ C such that ωb = ωc.
After multiplying ω−1 on both sides, we conclude that b = c, which implies b ∈ C. Similarly,
we use a symmetric argument to conclude B = C.

The next proposition is about the existence of an ideal "factor" to facilitate the proof of
prime ideal factorization.

Proposition 2.16. If A, B are ideals of D such that B ⊃ A, then there exists an ideal C
such that A = BC.

Proof. Recall that there exists 1 ≤ k ≤ hF such that Bk = ⟨ω⟩. Then, from A ⊂ B, we have
Bk−1A ⊂ ⟨ω⟩.

Then, we let C := ⟨ω−1⟩Bk−1A and observe that C is an ideal from ⟨ω−1⟩Bk−1A ⊂ D.
Immediately, we verify that

BC = B⟨ω−1⟩Bk−1A = ⟨ω⟩⟨ω−1⟩A = A,

by straightforward element chasing.
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Proposition 2.17. Every proper ideal in D can be written as a product of prime ideals.
Proof. Let A be a proper ideal. Recall that from Zorn’s lemma, A must be contained in a
maximal ideal P1 (even without Zorn’s lemma, since D/A is finite, A must be contained in a
maximal ideal). Then, from the last proposition on finding factors, we note that there exists
an ideal B1 such that A = P1B1.

Then, consider two situation. If B1 = D, then we are done since A = P1.
If B1 is a proper ideal of D, then we can further break down B1 into B1 = P2B2 and

consider whether B2 is a proper ideal of D. Notice that this process must terminate since
with this process, we have a chain of ascending ideals A ⊊ B1 ⊊ B2. By D being noetherian,
we note that at some n ∈ N, Bn = D. Finally, we can observe that

A =
∏

1≤i≤n

Pi.

Thus, every proper ideal in D can be written as a product of prime ideals.

3 Uniqueness of Factorization into Prime Ideals
We are now close to being able to show the factorization into prime ideals proved above is
unique. To this end we must establish a definition.
Definition 3.1. For a prime ideal P and another ideal A, we define its order under P ,
OrdP (A) to be the unique non-negative integer such that A ⊂ P t and A ̸⊂ P t+1

We might suspect this integer is well defined because the chain P ⊃ P 2 ⊃ P 3 ⊃ ...
features only proper containments, since if PP i = P i we can write P i = DP i and conclude
by Proposition 2.15 that P = D. We now establish a few preliminary facts about the order
of an ideal.
Proposition 3.2. Let P be a prime ideal.

(i) OrdP (P ) = 1.

(ii) For some other prime ideal P ′ ̸= P , OrdP (P ′) = 0.

(iii) For two ideals A, B ⊂ D, we have OrdP (AB) = OrdP (A) + OrdP (B).

Proof. The first claim is more or less by definition, and because we know P 2 ⊊ P . The
second claim is derived from the fact that the prime ideals in D are maximal, and therefore
P ′ ̸⊂ P . For the third claim, we must invoke Proposition 2.16, letting t = OrdP (A) and
t′ = OrdP (B) so that A ⊂ P t and B ⊂ P t′ implies there exist ideals A1, B1 where A = P tA1
and B = P t′

B1. Furthermore if, for instance, A1 ⊂ P , then by the same Proposition we
could pull out another factor of P , and find that A = P t+1A2 ⊂ P t+1 which contradicts the
definition of order. Thus A1 ̸⊂ P and similarly B1 ̸⊂ P .

Now we have AB = P t+t′
A1B1 ⊂ P t+t′ , and if AB ⊂ P t+t′+1, then we can lean on the

same proposition again to assert that P t+t′
A1B1 = AB = P t+t′+1C = P t+t′

PC on which
we can use Proposition 2.15 to argue A1B1 = PC ⊂ P , and then by the primeness of
P that either A1 ⊂ P or B1 ⊂ P , and we have shown this not to be true. So indeed,
OrdP (AB) = t + t′ = OrdP (A) + OrdP (B).
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We now have everything we need to prove the uniqueness of a prime ideal factorization
in D. We can express a finite product of ideals in the following way, ∏

P a(P ), ranging over
every prime ideal in D, where a(P ) is some integer exponent for each P such all but finitely
many of the a(P ) are zero. We have seen already that for every ideal A, there exists such an
expression for A.

Theorem 3.3. For every ideal A ⊂ D, expressing A as a product of prime ideals A = ∏
P a(P ),

we have the a(P ) are uniquely determined by a(P ) = OrdP (A), and therefor this product
representation is unique.

Proof. Let A = ∏
P a(P ) For some prime ideal P ′, take the order under P ′ of both sides,

giving

OrdP ′(A) =
∑

OrdP ′(P a(P )) =
∑

a(P )OrdP ′(P )

where we have applied the Proposition 3.2 to split apart the product and pull down the
exponents. Now by the same proposition, OrdP ′(P ) = 0 for all P ̸= P ′ and OrdP ′(P ′) = 1,
so finally OrdP ′(A) = a(P ′) and we are done.
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