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Abstract

Motivated by the bounds on the Chebyshev function ψ(x) and Merten’s Theorems, we
present an elementary proof of the Prime Number Theorem (PNT) by proving its equivalent
statement that ψ(x) is asymptotic to x. In our proof, we rely on the general Mobius inversion
formula to derive the Selberg’s inequality. Then, to smooth the arithmetic function and
amplify the contribution of primes in the Selberg’s inequality, we introduce a smoother S(y)
and an enhancer W (x). By studying properties of W (x), we prove the PNT in its equivalent
form α = lim supx→∞ |W (x)| = 0.
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1 Introduction and Preliminary Results

The prime number theorem, what formalizes the intuitive understanding that the occur-
rences of prime numbers become less frequent as one counts the natural numbers toward posi-
tive infinity, was conjectured by Gauss in the early 1790s and Legendre toward the end of the
same decade independently according to historical record and Gauss’ own recollection. Its proof
came in 1896 due to Hadamard and de la Vallée Poussin again independently after a century
of mathematical inquiry surrounding the topic, to which Chebychef and Riemann, among other
great mathematicians, contributed important partial results. This paper provides a version of
an elementary proof of said theorem derived from Erdös and Selberg’s paper completed in 1949,
sharpened by Breusch, Bombieri, Wirsing, and others, and organized by Levinson [1], upon
whose paper the following account mainly bases.

In this section, we introduce a number of preliminary ideas and results that are useful for
the sections that follow.

Theorem 1.1 (The prime number theorem). Let π(x) denote the number of primes not ex-
ceeding x (i.e. π(x) =

∑
p≤x 1), then

lim
x→∞

π(x)

x/ log x
= 1.

An equivalent version of the above can be written as such:

Theorem 1.2 (Equivalent form of the prime number theorem with Chebychef’s ψ-function).
Define ψ(x) =

∑
n≤x Λ(n) where Λ(x) is the von Mangoldt function (see section 2.8 in Apostol

[2] for detailed definition). Then

lim
x→∞

ψ(x)

x
= 1. (1)

A proof for the equivalency of Theorems 1.1 and 1.2 (i.e. why ψ(x) behaves like π(x) log x) will
be given under Lemma 1.6.

Now we explore more properties of ψ(x). We can start by constructing an arithmetic func-
tion T (x) defined as such:

T (x) =
∑
n≤x

log n.

Then by definition of Chebychef’s ψ-function and the von Mangolt function, we may observe

1



the following:

T (x) =
∑
j|x

Λ(j)

=
∑
ij≤x

Λ(j)

=
∑
i≤x

∑
j≤x/i

Λ(j)

=
∑
i≤x

ψ(x/i).

(2)

And the result of (2) is Chebychef’s identity. We then attempt to write ψ(x) in terms of T (x):

T (x) =
∑
i≤x

ψ(x/i)

= ψ(x) + ψ(x/2) + · · ·+ ψ(x/bxc)
ψ(x) = T (x)− ψ(x/2)− · · · − ψ(x/bxc)

(3)

To eliminate the ψ terms on the right hand side, we can construct terms T (x/2), T (x/3),
..., T (x/bxc), try subtracting them one by one from T (x) (e.g. T (x) − T (x/2), then T (x) −
T (x/2)−T (x/3), etc.), and compare the results to said right hand side. We observe that whether
or not T (x/i) ought to be subtracted, not subtracted, or added to make T (x)− T (x/2)− · · · ±
T (x/bxc) = T (x)−ψ(x/2)−· · ·−ψ(x/bxc) corresponds to the value of µ(x/i) (see definition of
the Möbius function µ in section 2.2 of Apostol), because if we subtract T (x/i) if µ(x/i) = −1
(so that we can begin to eliminate ψ terms), we need not subtract nor add T (x/i) if µ(x/i) = 0
because since x/i is not square free, all the ψ terms it has has already been eliminated in
previous subtractions, and we need to add T (x/i) if µ(x/i) = 1 to account for its ψ terms being
subtracted an additional time earlier. Thus we get the relation:

ψ(x) =
∑
k≤x

µ(k)T
(x
k

)
. (4)

Using the same technique and the definition of T from (2), we obtain also:

Λ(n) =
∑
k|n

µ(k) log n/k, (5)

where n ≥ 1. An additional observation can be made about T (x):

Lemma 1.3.
T (x) = x log x− x+O(log x).

Proof. This can be obtained directly by applying Abel’s summation.

With these, we can obtain some more properties involving these two arithmetic functions:

Lemma 1.4. ∑
n≤x

Λ(n)/n = log x+O(1).

.
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Proof. By (1), we have:

T (x) =
∑
j≤x

Λ(j)
∑
i≤x/j

1

=
∑
j≤x

Λ(j)bx
j
c

= x
∑
j≤x

Λ(j)

j
−
∑
j≤x

Λ(j)

{
x

j

}
= x

∑
j≤x

Λ(j)

j
−O(x).

By Lemma 1.3, we obtain the desired result. �

Lemma 1.5.
ψ(x) = O(x).

Proof. See lecture 19[3]. �

Lemma 1.6.

ψ(x) = π(x) log x+O

(
x log log x

log x

)
.

Proof. By definition of ψ, we have

ψ(x) =
∑
p≤x

log p+
∑

p≤x1/2
log p+

∑
p≤x1/3

log p+ · · · .
(6)

Where each sum is not zero if and only if x1/j ≥ 2, which is equivalent to saying j ≤ log x/ log 2.
Thus

ψ(x) ≤
∑
p≤x

log p+
log x

log 2

∑
p≤x1/2

log p

≤ log xπ(x) +
log x

log 2
π(x1/2) log x1/2

≤ log xπ(x) +
x1/2 log2 x

2 log 2
.

(7)

Again by (6), we see that since π(y) ≤ y:

ψ(x) ≥
∑

x/log2x<p≤x

log p ≥ log

(
x

log2 x

) ∑
x/ log2 x<p≤x

1

= log

(
x

log2 x

)(
π(x)− π

(
x

log2 x

))
ψ(x)

log x− 2 log log x
≥ π(x)− x

log2 x

π(x) log x ≤ ψ(x)
log x

log x− 2 log log x
+

x

log x

= ψ(x) + ψ(x)
2 log log x

log x− 2 log log x
+

x

log x
.

Since 2 log log x < log x/4 and by Lemma 1.5:

π(x) log x ≤ ψ(x) +O

(
x log log x

log x

)
.

Combined with (7), we have the desired result. �
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Lemma 1.7. ∑
n≤x

1

n
= log x+ γ +O(1/x),

where γ is Euler’s constant.

Proof. See Apostol section 3.4.

2 Selberg’s Elementary Inequality

Now we use (4) (Möbius inversion formula) to find how ψ(x) behaves for large x. Notice,
first, that the argument presented after (3) and the conclusion drawn at (4) can be rewritten
more generally by simply replacing ψ(x) and T (x) with F (x) and G(x). More explicitly, we
have:

G(x) =
∑
n≤x

F (x/n)

and

F (x) =
∑
k≤x

µ(k)G
(x
k

)
. (8)

To simplify the computation for our current endeavor, we try to find a simple F (x) with a
transform G(x) that is close to T (x). Then in that case we can subtract (8) from (4):

ψ(x)− F (x) =
∑
k≤x

µ(k)(T (
x

k
)−G(

x

k
)). (9)

If the right hand side can be shown to be small, then ψ(x) is also close to F (x). Taking some
hint from the intended result (1), we can assume that ψ(x) is close to x for large x, and try
setting F (x) = F0(x) = x. Then G0(x) =

∑
n≤x F0(x/n) = x

∑
n≤x n

−1 = x log x+γx+O(1) by
Lemma 1.7, which is not close enough to T (x) as represented in Lemma 1.3. We can therefore
refine F (x) such that F (x) = F1(x) = x− C where C is some constant. Then

G1(x) = x
∑
n≤x

1

n
− C

∑
n≤x

1 = x log x+ γx+O(1)− Cbxc

= x log x− (C − γ)x+O(1).

If we set C = 1 + γ,
T (x)−G(x) = O(log x), (10)

which is relatively small. Applying this to (9), we get

ψ(x)− x+ C =
∑
k≤x

µ(k)
(
T
(x
k

)
−G1

(x
k

))
. (11)

Since the logarithm grows slower than any positive algebraic power, log x = O(x1/2). Then (10)
implies:

T (x)−G1(x) = O(x1/2). (12)
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Using this and the fact that |µ(k)| ≤ 1, and by definition of big O, there is a constant K such
that the right hand side of (11) can be written as∑

k≤x
µ(k)

(
T
(x
k

)
−G1

(x
k

))
= Kx1/2

∑
k≤x

k−1/2

< Kx1/2

1 +
∑

2≤k≤x

∫ k

k−1
u−1/2du


≤ Kx1/2

(
1 +

∫ x

1
u−1/2du

)
= O(x).

(13)

Which suggests that
ψ(x) = O(x). (14)

This is a weaker result than the prime number theorem.
Now we can investigate further by rewriting (11) as

F (x) =
∑
k≤x

µ(k)G
(x
k

)
, (15)

where F = ψ − x + C and G = T − G1. We can increase the terms in the sum on the right
side without making asymptotic changes. For example, we can replace the right side with the
following expression motivated by the general Möbius inversion formula:

J(x) =
∑
k≤x

µ(k) log
x

k
G
(x
k

)
. (16)

Compute in terms of F from the definition of G:

J(x) =
∑
k≤x

µ(k) log
x

k

∑
j≤x/k

F

(
x

jk

)

=
∑
jk≤x

µ(k) log
x

k
F

(
x

jk

)
=
∑
n≤x

F
(x
n

) ∑
jk=n

µ(k) log
x

k

=
∑
n≤x

F
(x
n

)∑
k|n

µ(k) log
x

k

=
∑
n≤x

F
(x
k

)
log

x

n

∑
k|n

µ(k) +
∑
n≤x

F
(x
n

)∑
k|n

µ(k) log
n

k

(17)

since log(x/k) = log(x/n) + log(n/k).
By properties of summing µ and (5), combining with (16), we have

F (x) log x+
∑
n≤x

F
(x
n

)
Λ(n) =

∑
k≤x

µ(k) log
x

k
G
(x
k

)
. (18)

On a different note, by (10)

log x(T (x)−G1(x)) = O(logx) = O(x1/2). (19)

And by (13) ∑
k≤x

µ(k) log
x

k

(
T
(x
k

)
−G1

(x
k

))
= O(x). (20)
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Thus combining with (18), with F (x) = ψ(x)− x+ c gives

(ψ(x)− x) log x+
∑
n≤x

(
ψ
(x
n

)
− x

n

)
Λ(n) = O(x). (21)

By Lemma 1.4, (21) can be written as

ψ(x) log x+
∑
n≤x

Λ(n)ψ(x/n) = 2x log x+O(x). (22)

Applying Abel’s summation: ∑
n≤x

Λ(n) log n = ψ(x) log x+O(x). (23)

And ∑
j≤x

Λ(j)ψ

(
x

j

)
=
∑
j≤x

Λ(j)
∑
k≤x/j

Λ(k)

=
∑
jk≤x

Λ(j)Λ(k).
(24)

Let Λ2(n) = Λ(n) log n+
∑

jk=n Λ(j)Λ(k), then by (23) and (24), (22) becomes:∑
n≤x

Λ2(n) log n = 2x log x+O(x). (25)

By Lemma 1.3, ∑
n≤x

log n = x log x+O(x).

Combining (24) and (25)

Q(n) =
∑
k≤n

(Λ2(k)− 2 log k) = O(n), (26)

for n ≤ 2 and Q(1) = 0.

3 Enhancement on Selberg’s Inequality

In this section, we try to advance our understanding of the Selberg’s identity towards proving
the Prime Number theorem. First, a direct definition of R(x) = ψ(x)− x, x ≥ 2 can make the
Selberg’s identity (Eq. ??) be rephrased as

R(x) log x+
∑

Λ(n)R(x/n) = O(x). (27)

Thus, to prove the PNT in the form of Eq. (1), it is equivalent to prove the limit of R(x)
over x goes to zero as x goes to infinity; i.e.

lim
x→∞

R(x)

x
= 0. (28)

However, even though R(x/n) = 0 when n > x/2, the term is self-terminated, we cannot relate
this information directly to Eq. (28) to obtain a proof. Instead, we need to smooth R(x) to
avoid the existence of ”bumps” when x is prime and enhance the contribution of primes, while
the information encoded in the Selberg’s identity is still preserved. Thus, to realize such end, a
smoother R(x) and an enhancer W (x) are defined in the following discussion.
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3.1 A smoother S(y)

First, as an usual technique in the field of analytic number theory, integrals are used to
smooth out discontinuous arithmetic functions. In our case, we define S(y) as

S(y) =

∫ x

y

R(x)

x
dx, y ≤ 2, (29)

when y ≥ 2. From Levinson [1], to prove Eq. (28) (which is equivalent to proving the PNT), it
suffices to show the limit

lim
x→∞

S(x)

x
= 0. (30)

With this smoother S(y), we first observe that S(y) = O(y) and there is a Lipschitz condition
associated with S(y) from the following Lemma.

Lemma 3.1. For an arbitrary y ≥ 2,

|S(y)| ≤ cy, |S(y2)− S(y1)| ≤ c|y1 − y2|,

where c is a constant (the second inequality is also known as the Lipschitz condition).
Besides, from the Selberg’s inequality in R(x), we can derive

S(y) log y +
∑

Λ(j)S(y/j) = O(y). (31)

Proof. First, to prove that |S(x)| is bounded in general, we first recall the result from Apostol
that ψ(x) = O(x). Thus, by definition of R(y), we have

lim sup
x→∞

|R(x)|
x

≤ 1,

which implies |R(x)| ≤ cx, where c is a constant. Thus, by the definition of S(y), we consider
the case when R(x) is continuous and discontinuous.

When R(x) is continuous, y 6= pj , where p is prime, because prime values will make the
value of R(x) jump. Then, by taking the derivative of S(y), we have the desired inequality

|S′(y)| ≤ c, y 6= pj .

The case of discontinuous R(x) at y = pj is slightly more complicated because it relies on
first proving the Lipschitz condition.

By the property of integrals, S(y) is continuous. Then, since the magnitude of a sum is
less than or equal to the sum of the magnitudes (known as the general triangle inequality),
|S(y2)− S(y1)| ≤ c|y1 − y2| true guaranteed by the continuity. Therefore, the case of y = pj is
simply a special case of the Lipschitz condition when y1 = 2:

||S(y2)| − |S(2)|| = |S(y2)| ≤ c|y2 − 2| =⇒ |S(y)| ≤ cy.

Combined with the continuous case, |S(y)| is bounded by cy, which is equivalent to S(y) = O(y).

To prove Eq. (30), we first divide Eq. (27) by x integrate both sides to get∫ y

2
R(x)/x log xdx+

∑
Λ(n)

∫ y

2

R(x/n)

x
dx = O(y). (32)

Then, integrate the first part in Eq. (32) by parts∫ y

2
R(x)/x log xdx = log yS(y)−

∫ y

x

S(x)

x
dx = log yS(y) +O(y)
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using the bounds on |S(y)| just proved. Finally, by substitute u = x/n, Eq. (32) becomes

log yS(y) +O(y) +
∑

Λ(n)

∫ y/n

2

R(u)

u
du = log yS(y) +O(y) +

∑
Λ(j)S(y/j) = O(y),

which agrees with the desired Eq. (31). �

Then, from Levinson’s Lemma 5.2, 5.3 [1], and 5.4, the Selberg’s inequality can be further
smoothed so that the prime contribution becomes clearer and clearer. Note that in Levinson’s
paper, the author first improve the multiples of S(y) inside the sum from Λ(n) to log n, which
turns the arithmatic function to a continuous one. Then, the sum is further improved to an
integral without losing the power of the Selberg’s inequality. As the final result, Levinson
showed that there exists a constant K such that

log2 y|S(y)| ≤ 2

∫ y

2
|S(y/u)| log udu+Ky log y. (33)

With this result, we are ready to proceed to an enhancer W (x) as the final tool to prove
the PNT.

3.2 An enhancer W (x)

Indeed, an enhancer W (x) of S(y) is an exponential version that can amplify the contribution
of primes in terms of the prime function itself, while the previous sections targeted enlarge the
multiples of the prime function. Specifically, the exponential version of S(y) is defined as

W (x) = e−xS(ex). (34)

From Levinson [1], proving the PNT is equivalent to showing limx→∞ |W (x)| = 0.

However, we can define
α = lim sup

x→∞
|W (x)|. (35)

Then, we can simplify such goal as showing α = 0 (which only involves investigating the lim-
sup). To see why, first notice that |W (x)| is a positive function. Thus, the liminf must be larger
than 0. Then, since liminf is smaller than or equal to limsup, as long as limsup (α) is restricted
to 0, limsup equal to liminf implies the sequence is convergent and the limit is exactly zero.

Before proving α equals to zero, we first observe that α is bounded by 1 and another quantity
based Levinson’s Lemma 5.5, which is stated below.

Lemma 3.2 (Levinson, [1]). Define γ = lim supx→∞
1
x

∫ x
0 |W (u)|du. Then, α ≤ 1 and

α ≤ γ. (36)

The proof is omitted here, but the proof technique is similar to the proof of Lemma 3.1.

Although α can be restricted to be smaller than 1 quickly, to prove that α equals to zero
exactly requires a considerable amount of efforts. Thus, we first present two lemmas about
|W (x)|, which will be helpful to showing the final piece of α = 0.

Lemma 3.3. If k = 2c, then

|W (x2)−W (x1)| ≤ k|x2 − x1|,

which is the Lipschitz condition on W (x).
Moreover, ||W (x2)| − |W (x1)|| ≤ k|x2 − x1|.
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Proof. The proof strategy is similar to the one used to prove Lemma 3.1. We consider the cases
when x = j log p and x 6= j log p. In the first case, by the definition of W (x),

|W ′(x)| ≤ e−x|S(ex)|+ |S′(ex)|

by the product rule of taking derivatives. Then, as we have bounded |S(y)| and |S′(y)| bounded
by some constant c in the proof of Lemma 3.1, |W ′(x)| is bounded by some constant k = 2c
when x 6= j log p.

Thus, by apply the triangle inequality on the cases of x = j log p, we can conclude the
Lipschitz condition on W (x).

Finally, by the second triangle inequality ||a| − |b|| ≤ |a− b|,

||W (x2)| − |W (x1)|| ≤ |W (x2)−W (x1)| ≤ k|x2 − x1|.

�

Lemma 3.4 (Levinson, [1]). If W (v) 6= 0 for v1 < v < v2, then there exists a number M such
that ∫ v2

v1

|W (v)|dv ≤M. (37)

The lemma is not proved here, but the result follows from studying
∫ x
2
R(t)

t2
dt = O(1) using

the Abel’s Summation.

4 Proof of the Prime Number Theorem

Equipped with Lemma 3.3 and 3.4, we are ready to restrict α to exactly zero to prove the
PNT. With all the terminology we have developed, the PNT boils down to the following Lemma.

Lemma 4.1. With W (x) defined in Eq. 34 and α defined in Eq. 35,

α = 0.

Proof. First, based on the definition of limsup, for a fixed ε > 0, there exists an xε such that

|W (x)| ≤ ε, x ≥ xε. (38)

Then, if W (x) 6= 0 for all large x, then by Lemma 3.4, the integral of |W (x)| can be bounded
by some number M . Thus, γ = lim supx→∞

1
x

∫ x
0 |W (u)|du ≤ lim supx→∞M · 1x ≤ 0. Thus, by

Lemma 3.2, α = 0.

Thus to prove the result, it suffices to show that W (x) has arbitrarily large zeros. Let a and
b be successive zeros of W (x) for x > xε. Then consider the following three cases regarding the
distribution of zeros.

Case I. Assume b− a ≥ 2M/ε. By Lemma 3.4, since W (x) 6= 0 on the interval (a, b),∫ b

a
|W (x)|dx ≤M ≤ 1

2
(b− a)ε.

Case II. Assume b−a ≥ 2ε/k, where k is an integer such that 2ε/k < 2M/ε. Then, by Lemma
3.3, if we consider the graph of |W (x)|, any point must lie below the value k(b − a)/2 ≤ ε for
x ∈ (a, b). Thus, we have the inequality∫ b

a
|W (x)|dx ≤ 1

2
(b− a)ε.
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Case III. Assume 2ε/k < b − a < 2M/ε. Then, using the step as in Case II, bound most
points a distance ε/k from each end by ε, and bound other points by Eq. (38). As a result, we
have the following inequality

∫ b

a
|W (x)|dx ≤ ε2

k
+ (b− a− 2ε

k
)ε = (b− a)ε

(
1− ε

k(b− a)

)
≤ (b− a)ε(1− ε2

2Mk
) < (b− a)ε(1− α2

2Mk
).

Moreover, observe that since the values Mk > 1 and α ≤ 1, the inequality we derived in
Case I and II also implies the inequality above.

Thus, with the inequality and Lemma 3.4 to bound |W (x)|, by assuming the first zero of
W (x) as x1 and the largest zero smaller than y as xf , we have∫ y

0
|W (x)|dx ≤

∫ x1

0
|W (x)|dx+ (xf − x1)ε(1−

α2

2Mk
) +M,

where the first part integrate nonzero W (x) and the second part bounds the integral between
the first zero and last zero by the inequality derived above (note that the result of successive
zeros is generalized to any two zeros using the triangle inequality).

Next, by dividing both sides by y and use xf ≤ y,

1

y

∫ y

0
|W (x)|dx ≤ 1

y

∫ x1

0
|W (x)|dx+ ε(1− α2

2Mk
) +M/y.

By assuming y goes to infinity, using the definition of limsup, we have γ ≤ ε(1− α2/2Mk).
Therefore, we have the final inequality

α ≤ ε(1− α2

2Mk
). (39)

Thus, since Eq. (39) holds for arbitrarily small ε and α < ε, it must hold for ε = α. Thus,
from Eq. (39), α3 ≤ 0. Combined the fact that α ≥ 0, it must be the case that α = 0. �

Finally, with the last piece of the puzzle (α = 0), the long waited conjecture about the
distribution of primes can finally be called a theorem. In conclusion, we present an elementary
proof of the Prime Number Theorem based on the Selberg’s inequality.
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